Какие основные параметры биполярного транзистора. Биполярные транзисторы

Биполярный транзистор.

Биполярный транзистор - электронный полупроводниковый прибор, один из типов транзисторов, предназначенный для усиления, генерирования и преобразования электрических сигналов. Транзистор называется биполярный , поскольку в работе прибора одновременно участвуют два типа носителей заряда – электроны и дырки . Этим он отличается от униполярного (полевого) транзистора, в работе которого участвует только один тип носителей заряда.

Принцип работы обоих типов транзисторов похож на работу водяного крана, который регулирует водяной поток, только через транзистор проходит поток электронов. У биполярных транзисторов через прибор проходят два тока - основной "большой" ток, и управляющий "маленький" ток. Мощность основного тока зависит от мощности управляющего. У полевых транзисторов через прибор проходит только один ток, мощность которого зависит от электромагнитного поля. В данной статье рассмотрим подробнее работу биполярного транзистора.

Устройство биполярного транзистора.

Биполярный транзистор состоит из трех слоев полупроводника и двух PN-переходов. Различают PNP и NPN транзисторы по типу чередования дырочной и электронной проводимостей . Это похоже на два диода , соединенных лицом к лицу или наоборот.

У биполярного транзистора три контакта (электрода). Контакт, выходящий из центрального слоя, называется база (base). Крайние электроды носят названия коллектор и эмиттер (collector иemitter ). Прослойка базы очень тонкая относительно коллектора и эмиттера. В дополнение к этому, области полупроводников по краям транзистора несимметричны. Слой полупроводника со стороны коллектора немного толще, чем со стороны эмиттера. Это необходимо для правильной работы транзистора.

Работа биполярного транзистора.

Рассмотрим физические процессы, происходящие во время работы биполярного транзистора. Для примера возьмем модель NPN. Принцип работы транзистора PNP аналогичен, только полярность напряжения между коллектором и эмиттером будет противоположной.

Как уже говорилось в статье о типах проводимости в полупроводниках , в веществе P-типа находятся положительно заряженные ионы - дырки. Вещество N-типа насыщено отрицательно заряженными электронами. В транзисторе концентрация электронов в области N значительно превышает концентрацию дырок в области P.

Подключим источник напряжения между коллектором и эмиттером V КЭ (V CE). Под его действием, электроны из верхней N части начнут притягиваться к плюсу и собираться возле коллектора. Однако ток не сможет идти, потому что электрическое поле источника напряжения не достигает эмиттера. Этому мешает толстая прослойка полупроводника коллектора плюс прослойка полупроводника базы.

Теперь подключим напряжение между базой и эмиттером V BE , но значительно ниже чем V CE (для кремниевых транзисторов минимальное необходимое V BE - 0.6V). Поскольку прослойка P очень тонкая, плюс источника напряжения подключенного к базе, сможет "дотянуться" своим электрическим полем до N области эмиттера. Под его действием электроны направятся к базе. Часть из них начнет заполнять находящиеся там дырки (рекомбинировать). Другая часть не найдет себе свободную дырку, потому что концентрация дырок в базе гораздо ниже концентрации электронов в эмиттере.

В результате центральный слой базы обогащается свободными электронами. Большинство из них направится в сторону коллектора, поскольку там напряжение намного выше. Так же этому способствует очень маленькая толщина центрального слоя. Какая-то часть электронов, хоть гораздо меньшая, все равно потечет в сторону плюса базы.

В итоге мы получаем два тока: маленький - от базы к эмиттеру I BE , и большой - от коллектора к эмиттеру I CE .

Если увеличить напряжение на базе, то в прослойке P собереться еще больше электронов. В результате немного усилится ток базы, и значительно усилится ток коллектора. Таким образом,при небольшом изменении тока базы I B , сильно меняеться ток коллектора I С . Так и происходитусиление сигнала в биполярном транзисторе . Cоотношение тока коллектора I С к току базы I B называется коэффициентом усиления по току. Обозначается β , hfe или h21e , в зависимости от специфики расчетов, проводимых с транзистором.

Простейший усилитель на биполярном транзисторе

Рассмотрим детальнее принцип усиления сигнала в электрической плоскости на примере схемы. Заранее оговорюсь, что такая схема не совсем правильная. Никто не подключает источник постоянного напряжения напрямую к источнику переменного. Но в данном случае, так будет проще и нагляднее для понимания самого механизма усиления с помощью биполярного транзистора. Так же, сама техника расчетов в приведенном ниже примере носит несколько упрощенный характер.

1.Описание основных элементов цепи

Итак, допустим в нашем распоряжении транзистор с коэффициентом усиления 200 (β = 200). Со стороны коллектора подключим относительно мощный источник питания в 20V, за счет энергии которого будет происходить усиление. Со стороны базы транзистора подсоединим слабый источник питания в 2V. К нему последовательно подсоединим источник переменного напряжения в форме синуса, с амплитудой колебаний в 0.1V. Это будет сигнал, который нужно усилить. Резистор Rb возле базы необходим для того, чтобы ограничить ток, идущий от источника сигнала, обычно обладающего слабой мощностью.

2. Расчет входного тока базы Ib

Теперь посчитаем ток базы I b . Поскольку мы имеем дело с переменным напряжением, нужно посчитать два значения тока – при максимальном напряжении (V max) и минимальном (V min). Назовем эти значения тока соответственно - I bmax и I bmin .

Также, для того чтобы посчитать ток базы, необходимо знать напряжение база-эмиттер V BE . Между базой и эмиттером располагается один PN-переход. Получается, что ток базы «встречает» на своем пути полупроводниковый диод. Напряжение, при котором полупроводниковый диод начинает проводить - около 0.6V. Не будем вдаваться в подробности вольт-амперных характеристик диода , и для простоты расчетов возьмем приближенную модель, согласно которой напряжение на проводящем ток диоде всегда 0.6V. Значит, напряжение между базой и эмиттером V BE = 0.6V. А поскольку эмиттер подключен к земле (V E = 0), то напряжение от базы до земли тоже 0.6V (V B = 0.6V).

Посчитаем I bmax и I bmin с помощью закона Ома:

2. Расчет выходного тока коллектора iс

Теперь, зная коэффициент усиления (β = 200), можно с легкостью посчитать максимальное и минимальное значения тока коллектора (I cmax и I cmin).

3. Расчет выходного напряжения Vout

Через резистор Rc течет ток коллектора, который мы уже посчитали. Осталось подставить значения:

4. Анализ результатов

Как видно из результатов, V Cmax получился меньше чем V Cmin . Это произошло из-за того, что напряжение на резисторе V Rc отнимается от напряжения питания VCC. Однако в большинстве случаев это не имеет значения, поскольку нас интересует переменная составляющая сигнала – амплитуда, которая увеличилась c 0.1V до 1V. Частота и синусоидальная форма сигнала не изменились. Конечно же, соотношение V out /V in в десять раз - далеко на самый лучший показатель для усилителя, однако для иллюстрации процесса усиления вполне подойдет.

Итак, подытожим принцип работы усилителя на биполярном транзисторе. Через базу течет ток I b , несущий в себе постоянную и переменную составляющие. Постоянная составляющая нужна для того чтобы PN-переход между базой и эмиттером начал проводить – «открылся». Переменная составляющая – это, собственно, сам сигнал (полезная информация). Сила тока коллектор-эмиттер внутри транзистора – это результат умножения тока базы на коэффициент усиления β. В свою очередь, напряжение на резисторе Rc над коллектором – результат умножения усиленного тока коллектора на значение резистора.

Таким образом, на вывод V out поступает сигнал с увеличенной амплитудой колебаний, но с сохранившейся формой и частотой. Важно подчеркнуть, что энергию для усиления транзистор берет у источника питания VCC. Если напряжения питания будет недостаточно, транзистор не сможет полноценно работать, и выходной сигнал может получится с искажениями.

Режимы работы биполярного транзистора

В соответствии уровням напряжения на электродах транзистора, различают четыре режима его работы:

    Режим отсечки (cut off mode).

    Активный режим (active mode).

    Режим насыщения (saturation mode).

    Инверсный ражим (reverse mode).

Режим отсечки

Когда напряжение база-эмиттер ниже, чем 0.6V - 0.7V, PN-переход между базой и эмиттером закрыт. В таком состоянии у транзистора отсутствует ток базы. В результате тока коллектора тоже не будет, поскольку в базе нет свободных электронов, готовых двигаться в сторону напряжения на коллекторе. Получается, что транзистор как бы заперт, и говорят, что он находится в режиме отсечки .

Активный режим

В активном режиме напряжение на базе достаточное, для того чтобы PN-переход между базой и эмиттером открылся. В этом состоянии у транзистора присутствуют токи базы и коллектора. Ток коллектора равняется току базы, умноженном на коэффициент усиления. Т.е активным режимом называют нормальный рабочий режим транзистора, который используют для усиления.

Режим насыщения

Иногда ток базы может оказаться слишком большим. В результате мощности питания просто не хватит для обеспечения такой величины тока коллектора, которая бы соответствовала коэффициенту усиления транзистора. В режиме насыщения ток коллектора будет максимальным, который может обеспечить источник питания, и не будет зависеть от тока базы. В таком состоянии транзистор не способен усиливать сигнал, поскольку ток коллектора не реагирует на изменения тока базы.

В режиме насыщения проводимость транзистора максимальна, и он больше подходит для функции переключателя (ключа) в состоянии «включен». Аналогично, в режиме отсечки проводимость транзистора минимальна, и это соответствует переключателю в состоянии «выключен».

Инверсный режим

В данном режиме коллектор и эмиттер меняются ролями: коллекторный PN-переход смещен в прямом направлении, а эмиттерный – в обратном. В результате ток из базы течет в коллектор. Область полупроводника коллектора несимметрична эмиттеру, и коэффициент усиления в инверсном режиме получается ниже, чем в нормальном активном режиме. Конструкция транзистора выполнена таким образом, чтобы он максимально эффективно работал в активном режиме. Поэтому в инверсном режиме транзистор практически не используют.

Основные параметры биполярного транзистора.

Коэффициент усиления по току – соотношение тока коллектора I С к току базы I B . Обозначаетсяβ , hfe или h21e , в зависимости от специфики расчетов, проводимых с транзисторов.

β - величина постоянная для одного транзистора, и зависит от физического строения прибора. Высокий коэффициент усиления исчисляется в сотнях единиц, низкий - в десятках. Для двух отдельных транзисторов одного типа, даже если во время производства они были “соседями по конвейеру”, β может немного отличаться. Эта характеристика биполярного транзистора является, пожалуй, самой важной. Если другими параметрами прибора довольно часто можно пренебречь в расчетах, то коэффициентом усиления по току практически невозможно.

Входное сопротивление – сопротивление в транзисторе, которое «встречает» ток базы. Обозначается R in (R вх ). Чем оно больше - тем лучше для усилительных характеристик прибора, поскольку со стороны базы обычно находиться источник слабого сигнала, у которого нужно потреблять как можно меньше тока. Идеальный вариант – это когда входное сопротивление равняется бесконечность.

R вх для среднестатистического биполярного транзистора составляет несколько сотен КΩ (килоом). Здесь биполярный транзистор очень сильно проигрывает полевому транзистору, где входное сопротивление доходит до сотен ГΩ (гигаом).

Выходная проводимость - проводимость транзистора между коллектором и эмиттером. Чем больше выходная проводимость, тем больше тока коллектор-эмиттер сможет проходить через транзистор при меньшей мощности.

Также с увеличением выходной проводимости (или уменьшением выходного сопротивления) увеличивается максимальная нагрузка, которую может выдержать усилитель при незначительных потерях общего коэффициента усиления. Например, если транзистор с низкой выходной проводимостью усиливает сигнал в 100 раз без нагрузки, то при подсоединении нагрузки в 1 КΩ, он уже будет усиливать всего в 50 раз. У транзистора, с таким же коэффициентом усиления, но с большей выходной проводимостью, падение усиления будет меньше. Идеальный вариант – это когда выходная проводимость равняется бесконечность (или выходное сопротивление R out = 0 (R вых = 0)).

Необходимые пояснения даны, переходим к сути.

Транзисторы. Определение и история

Транзистор - электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)

Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.

Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.

Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.

В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» - дважды). А в полевом (он же униполярный) - или электроны, или дырки.

Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые - в цифровой.

И, напоследок: основная область применения любых транзисторов - усиление слабого сигнала за счет дополнительного источника питания.

Биполярный транзистор. Принцип работы. Основные характеристики


Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.

Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.


Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора ), а между эмиттером и базой - слабый управляющий ток (ток базы ). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй - с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».

Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но бо льшая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны - неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу . Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.

Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем - ток коллектора, а управляющий ток базы - то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.

Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.

Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) - соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.

Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21 . Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току . Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.

Вторым немаловажным параметром является входное сопротивление транзистора . Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.

Третий параметр биполярного транзистора - коэффициент усиления по напряжению . Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая - очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.

Также транзисторы имеют частотную характеристику , которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной .

Также параметрами биполярного транзистора являются:

  • обратный ток коллектор-эмиттер
  • время включения
  • обратный ток колектора
  • максимально допустимый ток

Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.

Режимы работы биполярного транзистора

Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
  1. Инверсный активный режим . Здесь открыт переход БК, а ЭБ наоборот закрыт. Усилительные свойства в этом режиме, естественно, хуже некуда, поэтому транзисторы в этом режиме используются очень редко.
  2. Режим насыщения . Оба перехода открыты. Соответственно, основные носители заряда коллектора и эмиттера «бегут» в базу, где активно рекомбинируют с ее основными носителями. Из-за возникающей избыточности носителей заряда сопротивление базы и p-n переходов уменьшается. Поэтому цепь, содержащую транзистор в режиме насыщения можно считать короткозамкнутой, а сам этот радиоэлемент представлять в виде эквипотенциальной точки.
  3. Режим отсечки . Оба перехода транзистора закрыты, т.е. ток основных носителей заряда между эмиттером и коллектором прекращается. Потоки неосновных носителей заряда создают только малые и неуправляемые тепловые токи переходов. Из-за бедности базы и переходов носителями зарядов, их сопротивление сильно возрастает. Поэтому часто считают, что транзистор, работающий в режиме отсечки, представляет собой разрыв цепи.
  4. Барьерный режим В этом режиме база напрямую или через малое сопротивление замкнута с коллектором. Также в коллекторную или эмиттерную цепь включают резистор, который задает ток через транзистор. Таким образом получается эквивалент схемы диода с последовательно включенным сопротивлением. Этот режим очень полезный, так как позволяет схеме работать практически на любой частоте, в большом диапазоне температур и нетребователен к параметрам транзисторов.

Схемы включения биполярных транзисторов

Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.

Схема включения с общим эмиттером

Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности - до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор - обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.

Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.

Схема включения с общей базой

Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное - не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.

В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.

Схема включения с общим коллектором

Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.

Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала

Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.

В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным - потому, что выходное напряжение снимается с эмиттера относительно общего провода.

Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).

Два слова о каскадах

Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.

Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.

Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке - VT1), который управляет энергией питания более мощного собрата (на рисунке - VT2).

Другие области применения биполярных транзисторов

Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления - то сигнал произвольной формы, зависящий от управляющего воздействия.

Маркировка

Поскольку статья уже разрослась до неприлично большого объема, то в этом пункте я просто дам две хорошие ссылки, по которым подробно расписаны основные системы маркировки полупроводниковых приборов (в том числе и транзисторов): http://kazus.ru/guide/transistors/mark_all.html и файл.xls (35 кб) .

Полезные комментарии:
http://habrahabr.ru/blogs/easyelectronics/133136/#comment_4419173

Теги:

  • транзисторы
  • биполярные транзисторы
  • электроника
Добавить метки

ТЕМА 4. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

4.1 Устройство и принцип действия

Биполярный транзистор – это полупроводниковый прибор, состоящий из трех областей с чередующимися типами электропроводности и пригодный для усиления мощности.

Выпускаемые в настоящее время биполярные транзисторы можно классифицировать по следующим признакам:

По материалу: германиевые и кремниевые;

По виду проводимости областей: типа р-n-р и n-p-n;

По мощности: малой (Рмах £ 0,3Вт), средней (Рмах £ 1,5Вт) и большой мощности (Рмах > 1,5Вт);

По частоте: низкочастотные, среднечастотные, высокочастотные и СВЧ.

В биполярных транзисторах ток определяется движением носителей заряда двух типов: электронов и дырок (или основными и неосновными). Отсюда их название – биполярные.

В настоящее время изготавливаются и применяются исключительно транзисторы с плоскостными р-n- переходами.

Устройство плоскостного биполярного транзистора показано схематично на рис. 4.1.

Он представляет собой пластинку германия или кремния, в которой созданы три области с различной электропроводностью. У транзистора типа n-р-n средняя область имеет дырочную, а крайние области – электронную электропроводность.

Транзисторы типа р-n-р имеют среднюю область с электронной, а крайние области с дырочной электропроводностью.

Средняя область транзистора называется базой, одна крайняя область – эмиттером, другая – коллектором. Таким образом в транзисторе имеются два р-n- перехода: эмиттерный – между эмиттером и базой и коллекторный – между базой и коллектором. Площадь эмиттерного перехода меньше площади коллекторного перехода.

Эмиттером называется область транзистора назначением которой является инжекция носителей заряда в базу. Коллектором называют область, назначением которой является экстракция носителей заряда из базы. Базой является область, в которую инжектируются эмиттером неосновные для этой области носители заряда.

Концентрация основных носителей заряда в эмиттере во много раз больше концентрации основных носителей заряда в базе, а их концентрация в коллекторе несколько меньше концентрации в эмиттере. Поэтому проводимость эмиттера на несколько порядков выше проводимости базы, а проводимость коллектора несколько меньше проводимости эмиттера.

От базы, эмиттера и коллектора сделаны выводы. В зависимости от того, какой из выводов является общим для входной и выходной цепей, различают три схемы включения транзистора: с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК).

Входная, или управляющая, цепь служит для управления работой транзистора. В выходной, или управляемой, цепи получаются усиленные колебания. Источник усиливаемых колебаний включается во входную цепь, а в выходную включается нагрузка.

Рассмотрим принцип действия транзистора на примере транзистора р-n-р –типа, включенного по схеме с общей базой (рис. 4.2).

Рисунок 4.2 – Принцип действия биполярного транзистора (р-n-р- типа)

Внешние напряжения двух источников питания ЕЭ и Ек подключают к транзистору таким образом, чтобы обеспечивалось смещение эмиттерного перехода П1 в прямом направлении (прямое напряжение), а коллекторного перехода П2 – в обратном направлении (обратное напряжение).

Если к коллекторному переходу приложено обратное напряжение, а цепь эмиттера разомкнута, то в цепи коллектора протекает небольшой обратный ток Iко (единицы микроампер). Этот ток возникает под действием обратного напряжения и создается направленным перемещением неосновных носителей заряда дырок базы и электронов коллектора через коллекторный переход. Обратный ток протекает по цепи: +Ек, база-коллектор, −Ек. Величина обратного тока коллектора не зависит от напряжения на коллекторе, но зависит от температуры полупроводника.

При включении в цепь эмиттера постоянного напряжения ЕЭ в прямом направлении потенциальный барьер эмиттерного перехода понижается. Начинается инжектирование (впрыскивание) дырок в базу.

Внешнее напряжение, приложенное к транзистору, оказывается приложенным в основном к переходам П1 и П2, т.к. они имеют большое сопротивление по сравнению с сопротивлением базовой, эмиттерной и коллекторной областей. Поэтому инжектированные в базу дырки перемещаются в ней посредством диффузии. При этом дырки рекомбинируют с электронами базы. Поскольку концентрация носителей в базе значительно меньше, чем в эмиттере, то рекомбинируют очень немногие дырки. При малой толщине базы почти все дырки будут доходить до коллекторного перехода П2. На место рекомбинированных электронов в базу поступают электроны от источника питания Ек. Дырки, рекомбинировавшие с электронами в базе, создают ток базы IБ.

Под действием обратного напряжения Ек потенциальный барьер коллекторного перехода повышается, толщина перехода П2 увеличивается. Но потенциальный барьер коллекторного перехода не создает препятствия для прохождения через него дырок. Вошедшие в область коллекторного перехода дырки попадают в сильное ускоряющее поле, созданное на переходе коллекторным напряжением, и экстрагируются (втягиваются) коллектором, создавая коллекторный ток Iк. Коллекторный ток протекает по цепи: +Ек, база-коллектор, -Ек.

Таким образом, в транзисторе протекает три тока: ток эмиттера, коллектора и базы.

В проводе, являющемся выводом базы, токи эмиттера и коллектора направлены встречно. Следовательно, ток базы равен разности токов эмиттера и коллектора: IБ = IЭ − IК.

Физические процессы в транзисторе типа n-р-n протекают аналогично процессам в транзисторе типа р-n-р.

Полный ток эмиттера IЭ определяется количеством инжектированных эмиттером основных носителей заряда. Основная часть этих носителей заряда достигая коллектора, создает коллекторный ток Iк. Незначительная часть инжектированных в базу носителей заряда рекомбинируют в базе, создавая ток базы IБ. Следовательно, ток эмиттера разделятся на токи базы и коллектора, т.е. IЭ = IБ + Iк.

Ток эмиттера является входным током, ток коллектора – выходным. Выходной ток составляет часть входного, т.е.

где a- коэффициент передачи тока для схемы ОБ;

Поскольку выходной ток меньше входного, то коэффициент a<1. Он показывает, какая часть инжектированных в базу носителей заряда достигает коллектора. Обычно величина a составляет 0,95¸0,995.

В схеме с общим эмиттером выходным током является ток коллектора, а входным – ток базы. Коэффициент усиления по току для схемы ОЭ:

(4.3)

Следовательно, коэффициент усиления по току для схемы ОЭ составляет десятки единиц.

Выходной ток транзистора зависит от входного тока. Поэтому транзистор- прибор, управляемый током.

Изменения тока эмиттера, вызванные изменением напряжения эмиттерного перехода, полностью передаются в коллекторную цепь, вызывая изменение тока коллектора. А т.к. напряжение источника коллекторного питания Ек значительно больше, чем эмиттерного Еэ, то и мощность, потребляемая в цепи коллектора Рк, будет значительно больше мощности в цепи эмиттера Рэ. Таким образом, обеспечивается возможность управления большой мощностью в коллекторной цепи транзистора малой мощностью, затрачиваемой в эмиттерной цепи, т.е. имеет место усиление мощности.

4.2 Схемы включения биполярных транзисторов

В электрическую цепь транзистор включают таким образом, что один из его выводов (электрод) является входным, второй – выходным, а третий – общим для входной и выходной цепей. В зависимости от того, какой электрод является общим, различают три схемы включения транзисторов: ОБ, ОЭ и ОК. Эти схемы для транзистора типа р-n-р приведены на рис. 4.3. Для транзистора n-р-n в схемах включения изменяются лишь полярности напряжений и направление токов. При любой схеме включения транзистора (в активном режиме) полярность включения источников питания должна быть выбрана так, чтобы эмиттерный переход был включен в прямом направлении, а коллекторный – в обратном.

Рисунок 4.3 – Схемы включения биполярных транзисторов: а) ОБ; б) ОЭ; в) ОК

4.3 Статические характеристики биполярных транзисторов

Статическим режимом работы транзистора называется режим при отсутствии нагрузки в выходной цепи.

Статическими характеристиками транзисторов называют графически выраженные зависимости напряжения и тока входной цепи (входные ВАХ) и выходной цепи (выходные ВАХ). Вид характеристик зависит от способа включения транзистора.

4.3.1 Характеристики транзистора, включенного по схеме ОБ

IЭ = f(UЭБ) при UКБ = const (рис. 4.4, а).

IК = f(UКБ) при IЭ = const (рис. 4.4, б).

Рисунок 4.4 – Статические характеристики биполярного транзистора, включенного по схеме ОБ

Выходные ВАХ имеют три характерные области: 1 – сильная зависимость Iк от UКБ (нелинейная начальная область); 2 – слабая зависимость Iк от UКБ (линейная область); 3 – пробой коллекторного перехода.

Особенностью характеристик в области 2 является их небольшой подъем при увеличении напряжения UКБ.

4.3.2 Характеристики транзистора, включенного по схеме ОЭ:

Входной характеристикой является зависимость:

IБ = f(UБЭ) при UКЭ = const (рис. 4.5, б).

Выходной характеристикой является зависимость:

IК = f(UКЭ) при IБ = const (рис. 4.5, а).

Рисунок 4.5 – Статические характеристики биполярного транзистора, включенного по схеме ОЭ

Транзистор в схеме ОЭ дает усиление по току. Коэффициент усиления по току в схеме ОЭ: Если коэффициент a для транзисторов a = 0,9¸0,99, то коэффициент b = 9¸99. Это является важнейшим преимуществом включения транзистора по схеме ОЭ, чем, в частности, определяется более широкое практическое применение этой схемы включения по сравнению со схемой ОБ.

Из принципа действия транзистора известно, что через вывод базы протекают во встречном направлении две составляющие тока (рис. 4.6): обратный ток коллекторного перехода IКО и часть тока эмиттера (1 − a)IЭ. В связи с этим нулевое значение тока базы (IБ = 0) определяется равенством указанных составляющих токов, т.е. (1 − a)IЭ = IКО. Нулевому входному току соответствуют ток эмиттера IЭ=IКО/(1−a)=(1+b)IКО и ток коллектора . Иными словами, при нулевом токе базы (IБ = 0) через транзистор в схеме ОЭ протекает ток, называемый начальным или сквозным током IКО(Э) и равным (1+ b) IКО.

Рисунок 4.6 – Схема включения транзистора с общим эмиттером (схема ОЭ)

4.4 Основные параметры

Для анализа и расчета цепей с биполярными транзисторами используют так называемые h – параметры транзистора, включенного по схеме ОЭ.

Электрическое состояние транзистора, включенного по схеме ОЭ, характеризуется величинами IБ, IБЭ, IК, UКЭ.

В систему h − параметров входят следующие величины:

1. Входное сопротивление

h11 = DU1/DI1 при U2 = const. (4.4)

представляет собой сопротивление транзистора переменному входному току при котором замыкание на выходе, т.е. при отсутствии выходного переменного напряжения.

2. Коэффициент обратной связи по напряжению:

h12 = DU1/DU2при I1= const. (4.5)

показывает, какая доля входного переменного напряжения передается на вход транзистора вследствие обратной связи в нем.

3. Коэффициент усилия по току (коэффициент передачи тока):

h21 = DI2/DI1при U2= const. (4.6)

показывает усиление переменного тока транзистором в режиме работы без нагрузки.

4. Выходная проводимость:

h22 = DI2/DU2 при I1 = const. (4.7)

представляет собой проводимость для переменного тока между выходными зажимами транзистора.

Выходное сопротивление Rвых = 1/h22.

Для схемы с общим эмиттером справедливы следующие уравнения:

(4.8)

Для предотвращения перегрева коллекторного перехода необходимо, чтобы мощность, выделяемая в нем при прохождении коллекторного тока, не превышала некоторой максимальной величины:

(4.9)

Кроме того, существуют ограничения по коллекторному напряжению:

и коллекторному току:

4.5 Режимы работы биполярных транзисторов

Транзистор может работать в трех режимах в зависимости от напряжения на его переходах. При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном – обратное.

Режим отсечки, или запирания, достигается подачей обратного напряжения на оба перехода (оба р-n- перехода закрыты).

Если же на обоих переходах напряжение прямое (оба р-n- перехода открыты), то транзистор работает в режиме насыщения.

В режиме отсечки и режиме насыщения управление транзистором почти отсутствует. В активном режиме такое управление осуществляется наиболее эффективно, причем транзистор может выполнять функции активного элемента электрической схемы (усиление, генерирование и т.п.).

4.6 Область применения

Биполярные транзисторы являются полупроводниковыми приборами универсального назначения и широко применяются в различных усилителях, генераторах, в импульсных и ключевых устройствах.

4.7 Простейший усилительный каскад на биполярном транзисторе

Наибольшее применение находит схема включения транзистора по схеме с общим эмиттером (рис. 4.7)

Основными элементами схемы являются источник питания Ек, управляемый элемент – транзисторVT и резистор Rк. Эти элементы образуют главную (выходную) цепь усилительного каскада, в которой за счет протекания управляемого тока создается усиленное переменное напряжение на выходе схемы.

Остальные элементы выполняют вспомогательную роль. Конденсатор Ср является разделительным. При отсутствии этого конденсатора в цепи источника входного сигнала создавался бы постоянный ток от источника питания Ек.

Рисунок 4.7 – Схема простейшего усилительного каскада на биполярном транзисторе по схеме с общим эмиттером

Резистор RБ, включенный в цепь базы, обеспечивает работу транзистора в режиме покоя, т.е. в отсутствие входного сигнала. Режим покоя обеспечивается током базы покоя IБ » Ек/RБ.

С помощью резистора Rк создается выходное напряжение, т.е. Rк выполняет функцию создания изменяющегося напряжения в выходной цепи за счет протекания в ней тока, управляемого по цепи базы.

Для коллекторной цепи усилительного каскада можно записать следующее уравнение электрического состояния:

Ек = Uкэ + IкRк, (4.10)

т.е сумма падения напряжения на резисторе Rк и напряжения коллектор-эмиттер Uкэ транзистора всегда равна постоянной величине – ЭДС источника питания Ек.

Процесс усиления основывается на преобразовании энергии источника постоянного напряжения Ек в энергию переменного напряжения в выходной цепи за счет изменения сопротивления управляемого элемента (транзистора) по закону, задаваемого входным сигналом.

При подаче на вход усилительного каскада переменного напряжения uвх в базовой цепи транзистора создается переменная составляющая тока IБ~, а значит ток базы будет изменяться. Изменение тока базы приводит к изменению значения тока коллектора (IК = bIБ), а значит, к изменению значений напряжений на сопротивлении Rк и Uкэ. Усилительные способности обусловлены тем, что изменение значений тока коллектора в b раз больше, чем тока базы.

4.8 Расчет электрических цепей с биполярными транзисторами

Для коллекторной цепи усилительного каскада (рис. 4.7) в соответствии со вторым законом Кирхгофа справедливо уравнение (4.10).

Вольт – амперная характеристика коллекторного резистора RК является линейной, а вольт – амперные характеристики транзистора представляют собой нелинейные коллекторные характеристики транзистора (рис. 4.5, а), включенного по схеме ОЭ.

Расчет такой нелинейной цепи, т.е определение IK, URK и UКЭ для различных значений токов базы IБ и сопротивлений резистора RК можно провести графически. Для этого на семействе коллекторных характеристик (рис. 4.5, а) необходимо провести из точки ЕК на оси абсцисс вольт – амперную характеристику резистора RК, удовлетворяющую уравнению:

Uкэ = Ек − RкIк. (4.11)

Эту характеристику строят по двум точкам:

Uкэ =Ек при Iк = 0 на оси абсцисс и Iк = Ек/Rк при Uкэ = 0 на оси ординат. Построенную таким образом ВАХ коллекторного резистора Rк называют линией нагрузки. Точки пересечения ее с коллекторными характеристиками дают графическое решение уравнения (4.11) для данного сопротивления Rк и различных значений тока базы IБ. По этим точкам можно определить коллекторный ток Iк, одинаковый для транзистора и резистора Rк, а также напряжение UКЭ и URK.

Точка пересечения линии нагрузки с одной из статических ВАХ называется рабочей точкой транзистора. Изменяя IБ, можно перемещать ее по нагрузочной прямой. Начальное положение этой точки при отсутствии входного переменного сигнала называют точкой покоя − Т0.

а) б)

Рисунок 4.8 – Графоаналитический расчет рабочего режима транзистора при помощи выходных и входной характеристики.

Точка покоя (рабочая точка) Т0 определяет ток IКП и напряжение UКЭП в режиме покоя. По этим значениям можно найти мощность РКП, выделяющуюся в транзисторе в режиме покоя, которая не должна превышать предельной мощности РК мах, являющейся одним из параметров транзистора:

РКП = IКП ×UКЭП £ РК мах. (4.12)

В справочниках обычно не приводится семейство входных характеристик, а даются лишь характеристики для UКЭ = 0 и для некоторого UКЭ > 0.

Входные характеристики для различных UКЭ, превышающих 1В, располагаются очень близко друг к другу. Поэтому расчет входных токов и напряжений можно приближенно делать по входной характеристике при UКЭ > 0, взятой из справочника.

На эту кривую переносятся точки А, То и Б выходной рабочей характеристики, и получаются точки А1, Т1 и Б1 (рис. 4.8, б). Рабочая точка Т1 определяет постоянное напряжение базы UБЭП и постоянной ток базы IБП.

Сопротивление резистора RБ (обеспечивает работу транзистора в режиме покоя), через который от источника ЕК будет подаваться постоянное напряжение на базу:

(4.13)

В активном (усилительном) режиме точка покоя транзистора То находится примерно посередине участка линии нагрузки АБ, а рабочая точка не выходит за пределы участка АБ.

Биполярный транзистор – это полупроводниковый прибор с дву­мя взаимодействующими р- n -переходами и с тремя выводами (рис. 1.15). В зависимости от чередования легированных областей различают транзисторы n-p-n -типа (рис. 1.15, а ) и р- n-р -типа (рис, 1.15, б ).

На рис. 1.15, в, г даны условные обозначения транзисторов п-р-п- и р- n-р- типов, соответственно. Выводы транзисторов обозначаются: Э – эмиттер, Б – база, К – коллектор.

Эмиттерная и коллекторная области отличаются тем, что в эмиттерной об­ласти концентрация примесей много больше, чем в коллекторной об­ласти. Переход, возникающий между эмиттером и базой, называется эмиттерным переходом , а переход, возникающий между коллектором и базой – коллекторным .

На рис. 1.16 приведена схема включения транзистора с подключен­ными источниками постоянного напряжения и коллекторным рези­стором. В этой схеме с корпусом соединен вывод базы транзистора. Поэтому эту схему называют схемой включения транзистора с общей базой (ОБ).

Различают четыре режима работы биполярного транзистора :

1) активный режим – открыт эмиттерный переход и закрыт коллекторный переход (рис. 1.16);

2) режим отсечки – оба р- n -перехода закрыты, и существенного тока через транзистор нет.

Для получения этого режима необходимо в схеме (см. рис. 1.16) изменить полярность источника Е Э на противоположную;

1) режим насыщения – два р- n -перехода транзистора открыты и через них протекают прямые токи. Для получения этого ре­жима необходимо в схеме (см. рис. 1.16) изменить полярность источника Е К на противопо­ложную;

2) инверсный режим – открыт коллекторный переход и за­крыт эмиттерный переход. Для получения этого режима не­обходимо в схеме (см. рис. 1.16) изменить на противоположные полярности источников Е К и Е Э .

Для усиления и преобразования сигналов в основном используется активный режим работы. Работа биполярного транзистора в активном режиме основана на явлении диффузии, а также на эффекте дрейфа носителей заряда в электрическом поле.

Работа транзи­стора в активном режиме

Рассмотрим работу транзи­стора в активном режиме на примере транзистора р-n-р-типа (рис. 1.16). В этом режиме эмиттерный переход транзистора открыт. Откры­вающее напряжение равно Е Э = 0,4…0,7 В.

Через открытый эмиттерный переход течет ток i Э (i Э = 0,1…10 мА для маломощного транзистора). Как правило, в эмиттерной области транзистора кон­центрация акцепторных примесей во много раз больше концентрации донорных примесей в базовой n- области транзистора. Поэтому кон­центрация дырок в области эмиттера много больше концентрации электронов в области базы, и практически весь ток эмиттера – это дырочный ток.

В одиночном p-n -переходе при диффузии дырок в п -область происходит полная рекомбинация инжектированных дырок с электронами п -области. В эмиттерном переходе транзистора происходит такой же процесс. Благодаря этому процессу возникает ток базы i Б (см. рис. 1.16). Однако в транзисторе происходят более сложные процессы.

Главной особенностью конструкции транзистора является относи­тельно тонкая базовая област ь. Ширина базы (W ) в транзисторе много меньше длины свободного пробега дырок (L ). У современных кремниевых транзисторов W » 1 мкм, а диффузионная длина L = 5…10 мкм. Следовательно, подавляющее большинство дырок достигают коллекторного перехода, не успев рекомбинировать с элек­тронами базы. Попадая в обратно смещенный коллекторный переход, дырки дрейфуют (и ускоряются) в имеющемся поле перехода.

Пройдя коллекторный переход, дырки рекомбинируют с электронами, подтекающими к коллектору от источника питания (Е К ). Отметим, что этот дырочный ток во много раз превышает собственный обратный ток закрытого коллекторного перехода и практически полностью определяет ток коллектора (i К ) транзистора.

Из анализа активного режима (рис. 1.16) следует уравнение для токов транзистора:

В этом уравнении ток базы много меньше тока эмиттера и тока коллектора, а
ток коллектора практически равен току эмиттера транзистора.

Соотношения между токами в транзисторе характеризуются двумя параметрами:

коэффициентом передачи тока эмиттера

и коэффициентом передачи тока базы

Используя формулу (1.2), полу­чим формулу взаимосвязи коэффициентов передачи :

Значения коэффициентов α и β зависят от конструкции транзисто­ра. Для большинства маломощных транзисторов, используемых в уст­ройствах связи и в компьютерах, коэффициент b = 20…200, а коэф­фициент a = 0,95…0,995.

Усилительные свойства транзистора

Рассмотрим усилительные свойства транзистора. Пусть на входе транзистора имеется напряжение Е Э = 0,5 В. И пусть это напряжение создает ток i Э = 5 мА. Мощность, расходуемая на управление транзистором, равна:

Р ВХ = Е Э i Э = 0,5 × 5 ×10 -3 = 2,5 мВт.

Пусть сопротивление полезной нагрузки в коллекторной цепи транзистора (рис. 1.17) равно R К = 1 кОм. По нагрузочному резистору протекает коллекторный ток, примерно равный эмиттерному току транзистора: i K » i Э . Выходная мощность, выделяющаяся на нагрузке, равна:

Р Н = i K 2 R K = 25 мВт.

Следовательно, в схеме (см. рис. 1.17) обеспечивается десятикратное усиление по мощности. Заметим, что для обеспечения такого усиления требуется, чтобы на коллекторный переход было подано большое запирающее напряжение:

Е К > U K ,

где U K = i K R K – падение напряжения на нагрузочном сопротивлении в цепи коллектора.

Увеличенная энергия выходного сигнала обеспечивается источником питания в коллекторной цепи.

Рассмотрим другие режимы работы транзистора:

· в режиме насыщения возникает прямой ток коллекторного перехода. Его направление противоположно направлению диффузионного тока дырок. Результирующий ток коллектора резко уменьшается, и резко ухудшаются усилительные свойства транзистора;

· редко используется транзи­стор в инверсном режиме, так как инжекционные свойства коллектора много хуже инжекционных свойств эмиттера;

· в режиме отсечки все токи через транзистор практически равны нулю – оба перехода тран­зистора закрыты, и усилительные свойства транзистора не проявляют­ся.

Кроме рассмотренной схемы включения транзистора с общей базой используются две другие схемы:

1) при соединении с корпусом эмиттера транзистора получим схему с общим эмиттером (ОЭ) (рис. 1.17). Схема ОЭ наиболее часто встречается на практике;

2) при соединении с корпусом коллектора транзистора получим схему с общим коллектором (ОК) . В этих схемах управляющее напряжение подается на базовый вывод транзистора.

Зависимости токов через выводы транзистора от приложенных к транзистору напряжений называют вольт-амперными характеристи­ками (ВАХ) транзистора.

Для схемы с общим эмиттером (рис. 1.17) ВАХ транзистора имеют вид (рис. 1.18, 1.19). Аналогичные графики можно получить для схемы с общей базой. Кривые (см. рис. 1.18) называются входными характеристиками транзистора , так как они показывают зависимость входного тока от управляющего входного напряжения, подаваемого между базой и эмиттером транзистора. Входные характеристики транзистора близки к характеристикам р- n -перехода.

Зависимость входных характеристик от напряжения на коллекторе объясняется увеличением ширины кол­лекторного перехода и, следовательно, уменьшением толщины базы при увеличении обратного напряжения на коллекторе транзистора (эффект Эрли).

Кривые (см. рис. 1.19) называются выходными характеристиками транзи­стора . Их используют для определения коллекторного тока транзистора. Увеличению коллекторного тока соответствует увеличе­ние управляющего напряжения на базе транзистора:

u БЭ4 > u БЭ3 > u БЭ2 > u БЭ1. .

При u КЭ £ U НАС (см. рис. 1.19) напряжение на коллекторе транзистора ста­новится меньше напряжения на базе. В этом случае открывается кол­лекторный переход транзистора, и возникает режим насыщен
ия, при котором ток коллектора резко уменьшается.

При большом напряжении на коллекторе ток коллектора начинает возрастать, так как возникает процесс лавинного (или теплового) про­боя коллекторного перехода транзистора.

Из анализа ВАХ транзистора следует, что транзистор, как и диод, относится к нелинейным элементам. Однако в активном режиме при u КЭ > U НАС ток коллектора транзистора изменяется примерно прямо пропорционально приращениям входного управляющего напряжения на базе транзистора, т.е. выходная цепь транзистора близка по свойствам к идеальному управляемому источнику тока. Ток коллектора в активном режиме практически не зависит от нагрузки, подключаемой к коллектору транзистора.

На рис. 1.20 показана простейшая линейная эквивалентное схема транзистора , полученная для активного режима работы при подаче на транзистор малых по амплитуде переменных сигналов (U m < 0,1 В). Основным элементом этой схемы является источник тока, управляемый входным напряжением:

I K = SU БЭ ,

где S – крутизна транзистора, равная для маломощных транзисторов 10…100 мА/В.

Сопротивление r КЭ характеризует потери энергии в коллекторной цепи. Его значение для маломощных транзисторов равно десяткам и сотням килоом. Сопротивление эмиттерного перехода (r БЭ ) равно сотням ом или единицам килоом. Это сопротивление характеризует потери энергии на управление транзистором. Значения параметров эквивалентной схемы можно найти, указывая рабочие точки на входных и выходных ВАХ тран­зистора и определяя соответствующие производные в этих рабочих точках (или задавая в рабочих точках приращения соответствующих токов и напряжений).

В свое время транзисторы пришли на смену электронным лампах. Это произошло благодаря тому, что они имеют меньшие габариты, высокую надежность и менее затратную стоимость производства. Сейчас, биполярные транзисторы являются основными элементами во всех усилительных схемах.

Представляет собой полупроводниковый элемент, имеющий трехслойную структуру, которая образует два электронно-дырочных перехода . Поэтому транзистор можно представить в виде двух встречно включенных диода . В зависимости от того, что будет являться основными носителями заряда, различают p-n-p и n-p-n транзисторы.


База – слой полупроводника, который является основой конструкции транзистора.

Эмиттером называется слой полупроводника, функция которого инжектирование носителей заряда в слой базы.

Коллектором называется слой полупроводника, функция которого собирать носители заряда прошедшие через базовый слой.

Как правило, эмиттер содержит намного большее количество основных зарядов, чем база. Это основное условие работы транзистора, потому что в этом случае, при прямом смещении эмиттерного перехода, ток будет обуславливаться основными носителями эмиттера. Эмиттер сможет осуществлять свою главную функцию – впрыск носителей в слой базы. Обратный ток эмиттера обычно стараются сделать как можно меньше. Увеличение основных носителей эмиттера достигается с помощью высокой концентрации примеси .

Базу делают как можно более тонкой . Это связано с временем жизни зарядов. Носители зарядов должны пересекать базу и как можно меньше рекомбинировать с основными носителями базы, для того чтобы достигнуть коллектора.

Для того чтобы коллектор мог наиболее полнее собирать носители прошедшие через базу его стараются сделать шире.

Принцип работы транзистора

Рассмотрим на примере p-n-p транзистора.


В отсутствие внешних напряжений, между слоями устанавливается разность потенциалов. На переходах устанавливаются потенциальные барьеры. Причем, если количество дырок в эмиттере и коллекторе одинаковое, тогда и потенциальные барьеры будут одинаковой ширины.

Для того чтобы транзистор работал правильно, эмиттерный переход должен быть смещен в прямом направлении, а коллекторный в обратном . Это будет соответствовать активному режиму работы транзистора. Для того чтобы осуществить такое подключение, необходимы два источника. Источник с напряжением Uэ подключается положительным полюсом к эмиттеру, а отрицательным к базе. Источник с напряжением Uк подключается отрицательным полюсом к коллектору, а положительным к базе. Причем Uэ < Uк.


Под действием напряжения Uэ, эмиттерный переход смещается в прямом направлении. Как известно, при прямом смещении электронно-дырочного перехода, внешнее поле направлено противоположно полю перехода и поэтому уменьшает его. Через переход начинают проходить основные носители, в эмиттере это дырки 1-5, а в базе электроны 7-8. А так как количество дырок в эмиттере больше, чем электронов в базе, то эмиттерный ток обусловлен в основном ими.

Эмиттерный ток представляет собой сумму дырочной составляющей эмиттерного тока и электронной составляющей базы.

Так как полезной является только дырочная составляющая, то электронную стараются сделать как можно меньше. Качественной характеристикой эмиттерного перехода является коэффициент инжекции .

Коэффициент инжекции стараются приблизить к 1.

Дырки 1-5 перешедшие в базу скапливаются на границе эмиттерного перехода. Таким образом, создается высокая концентрация дырок возле эмиттерного и низкая концентрация возле коллекторного перехода, в следствии чего начинается диффузионное движение дырок от эмиттерного к коллекторному переходу. Но вблизи коллекторного перехода концентрация дырок остается равной нулю, потому что как только дырки достигают перехода, они ускоряются его внутренним полем и экстрагируются (втягиваются) в коллектор. Электроны же, отталкиваются этим полем.

Пока дырки пересекают базовый слой они рекомбинируют с электронами находящимися там, например, как дырка 5 и электрон 6. А так как дырки поступают постоянно, они создают избыточный положительный заряд, поэтому, должны поступать и электроны, которые втягиваются через вывод базы и образуют базовый ток Iбр. Это важное условие работы транзистора – концентрация дырок в базе должна быть приблизительно равна концентрации электронов. Другими словами должна обеспечиваться электронейтральность базы.

Количество дырок дошедших до коллектора, меньше количество дырок вышедших из эмиттера на величину рекомбинировавших дырок в базе. То есть, ток коллектора отличается от тока эмиттера на величину тока базы.

Отсюда появляется коэффициент переноса носителей, который также стараются приблизить к 1.

Коллекторный ток транзистора состоит из дырочной составляющей Iкр и обратного тока коллектора.

Обратный ток коллектора возникает в результате обратного смещения коллекторного перехода, поэтому он состоит из неосновных носителей дырки 9 и электрона 10. Именно потому, что обратный ток образован неосновными носителями, он зависит только от процесса термогенерации, то есть от температуры. Поэтому его часто называют тепловым током .

От величины теплового тока зависит качество транзистора, чем он меньше, тем транзистор качественнее.

Коллекторный ток связан с эмиттерным коэффициентом передачи тока .

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «api-clinic.ru» — Центр естественной медицины