Ингибиторы ферментов. Неконкурентное ингибирование


Конкурентное ингибирование

Существуют обратимые ингибиторы двух типов – конкурентные и неконкурентные. Изучение обратимых ингибиторов ферментов позволило получить весьма важные сведения о структуре активных центров различных ферментов.

Конкурентный ингибитор конкурирует с субстратом за связывание с активным центром, но в отличие от субстрата связанный с ферментом конкурентный ингибитор не подвергается ферментативному превращению (Рисунок 1). Отличительная особенность конкурентного ингибирования состоит в том, что его можно устранить или ослабить, просто повысив концентрацию субстрата.

Рисунок 1- Схема конкурентного ингибирования активности фермента

Например, если при заданных концентрациях субстрата и конкурентного ингибитора активность фермента подавлена на 50%, то мы можем уменьшить степень ингибирования, повысив концентрацию субстрата.

По своей трехмерной структуре конкурентные ингибиторы обычно напоминают субстрат данного фермента. Благодаря такому сходству конкурентному ингибитору удается «обмануть» фермент и связаться с ним. Конкурентное ингибирование можно количественно изучать на основе теории МихаэлисаМентен. Конкурентньпй ингибитор I просто обратимо присоединяется к ферменту Е, образуя с ним комплекс EI.Однако в отличие от субстрата ингибитор не подвергается действию фермента и новые продукты реакции не образуются (Рисунок 1).

Классическим примером конкурентного ингибирования служит ингибирование сукцинатдегидрогеназы анионом малоновой кислоты (Рисунок 2). Сукцинатдегидрогеназа входит в состав группы ферментов, катализирующих реакции цикла трикарбоновых кислот - конечный метаболический путь окислительного разрушения углеводов и жиров в митохондриях. Этот фермент катализирует отщепление двух атомов водорода от сукцината - по одому от каждой из двух метиленовых (-СН 2 -) групп. Сукцинатдегидрогеназа ингибируется малонатом, который напоминает сукцинат тем, что он также содержит две карбоксильные группы, принимающие при рН 7,0 ионизированную (депротонированную) форму. Однако он отличается от сукцината тем, что в его молекуле имеется только три атома углерода. Сукцинат-дегидрогеназа не способна отщеплять водород от малоната, но мапонат занимает активный центр фермента, не давая ему возможности взаимодействовать с нормальным субстратом. Малонат является обратимым ингибитором, так как повышение концентрации сукцината при заданной концентрации малоната снижает степень ингибирования фермента. В качестве конкурентных ингибиторов сукцинатдегидрогеназы могут выступать и другие соединения, содержащие две отрицательно заряженные группы, расположенные на соответствующем расстоянии друг от друга. К ним относится, например, оксалоацетат - промежуточный продукт в цикле трикарбоновых кислот.


Рисунок 2 - Реакция, катализируемая сукцинатдегидрогеназой, и ее конкурентное ингибирование

Конкурентные ингибиторы напоминают в структурном отношении сукципат: они содержат две определенным образом расположенные в пространстве отрицательно заряженные группы, которые соответствуют конформацин активного центра.

Изучение структурных особенностей всех этих ингибиторов позволило сделать вывод, что в каталитическом центре сукцинатдегидрогеназы находятся две определенным образом расположенные в пространстве положительно заряженные группы, способные притягивать две отрицательно заряженные карбоксильные группы сукцинат-аниона. Таким образом, каталитический центр сукцинатдегидрогеназы оказывается комплементарным структуре своего субстрата (Рисунок 2).

Конкурентное ингибирование проще всего можно распознать экспериментальным путем, определив влияние концентрации ингибитора на зависимость начальной скорости реакции от концентрации субстрата. Для выяснения вопроса о том, по какому типу конкурентному или неконкурентному происходит обратимое ингибирование фермента, весьма удобно преобразовать уравнение Михаэлиса-Ментен в линейную форму. Чаще всего для этой цели используют метод двойных обратных величин. Из графиков, построенных в двойных обратных координатах, можно определить также значение константы диссоциации комплекса фермент ингибитор. Для реакции диссоциации

константа диссоциации равна

Все биохимические реакции, протекающие в организме, подвержены специфическому контролю, который осуществляется через активирующее или ингибирующее воздействие на регуляторные ферменты. Последние обычно находятся в начале цепочек метаболических превращений и либо запускают многоэтапный процесс, либо тормозят его. Регулированию также подвергаются некоторые единичные реакции. Конкурентное ингибирование является одним из основных механизмов контроля каталитической активности ферментов.

Что такое ингибирование?

Механизм ферментативного катализа основан на связывании активного центра энзима с молекулой субстрата (комплекс ES), в результате чего происходит химическая реакция с образованием и освобождением продукта (E+S = ES = EP = E+P).

Ингибированием фермента называют снижение скорости или полную остановку процесса катализа. В более узком смысле под этим термином подразумевают уменьшение сродства активного центра к субстрату, что достигается путем связывания молекул энзимов с веществами-ингибиторами. Последние могут действовать различными способами, на основании чего поделены на несколько типов, которым соответствуют одноименные механизмы ингибирования.

Основные типы ингибирования

По характеру протекания процесса ингибирование бывает двух видов:

  • Необратимое - вызывает стойкие изменения в молекуле фермента, лишающие ее функциональной активности (последняя не подлежит восстановлению). Оно может иметь как специфический, так и неспецифический характер. Ингибитор прочно связывается с энзимом путем ковалентного взаимодействия.
  • Обратимое - основной вид негативной регуляции ферментов. Осуществляется за счет обратимого специфического присоединения ингибитора к белку-энзиму слабыми нековалентными связями, поддается кинетическому описанию по уравнению Михаэлиса-Ментен (исключение составляет аллостерическая регуляция).

Выделяют два основных типа обратимого ингибирования ферментов: конкурентное (может быть ослаблено увеличением концентрации субстрата) и неконкурентное. В последнем случае происходит снижение максимально возможной скорости катализа.

Основная разница между конкурентным и неконкурентным ингибированием заключается в месте присоединения регуляторного вещества к ферменту. В первом случае ингибитор связывается непосредственно с активным центром, а во втором - с другим участком энзима, либо с фермент-субстратным комплексом.

Существует также смешанный тип ингибирования, при котором связывание с ингибитором не предотвращает образование ES, но замедляет катализ. В этом случае вещество-регулятор находится в составе двойных или тройных комплексов (EI и EIS). При бесконкурентном типе фермент связывается только с ES.

Особенности обратимого конкурентного ингибирования ферментов

Конкурентный механизм ингибирования основан на структурном сходстве регуляторного вещества с субстратом. В результате образуется комплекс активного центра с ингибитором, условно обозначаемый как EI.

Обратимое конкурентное ингибирование имеет следующие особенности:

  • связывание с ингибитором происходит в активном центре;
  • инактивация молекулы фермента обратима;
  • ингибирующий эффект может быть уменьшен увеличением концентрации субстрата;
  • ингибитор не влияет на максимальную скорость ферментативного катализа;
  • комплекс EI может распадаться, что характеризуется соответствующей константой диссоциации.

При таком типе регуляции ингибитор и субстрат как бы соперничают (конкурируют) друг с другом за место в активном центре, откуда и произошло название процесса.

В итоге конкурентное ингибирование можно определить как обратимый процесс торможения ферментативного катализа, основанный на специфическом сродстве активного центра к веществу-ингибитору.

Механизм действия

Связывание ингибитора с активным центром препятствует образованию фермент-субстратного комплекса, необходимого для осуществления катализа. В итоге молекула энзима становится неактивной. Тем не менее каталитический центр может связаться не только с ингибитором, но и с субстратом. Вероятность образования того или иного комплекса зависит от соотношения концентраций. Если молекул субстрата значительно больше, то фермент будет реагировать с ними чаще, чем с ингибитором.

Влияние на скорость химической реакции

Степень торможения катализа при конкурентном ингибировании определяется тем, какое количество фермента будут образовывать EI-комплексы. При этом можно увеличить концентрацию субстрата до такой степени, что роль ингибитора будет вытеснена, а скорость катализа достигнет максимально возможного значения, соответствующего величине V max по уравнению Михаэлиса-Ментен.

Такое явление объясняется сильным разбавлением ингибитора. Как следствие, вероятность связывания с ним молекул фермента сводится к нулю, а активные центры реагируют только с субстратом.

Кинетические зависимости ферментативной реакции при участии конкурентного ингибитора

Конкурентное ингибирование увеличивает константу Михаэлиса (K m), которая равна концентрации субстрата, необходимой для достижения ½ максимальной скорости катализа в начале реакции. Количество фермента, гипотетически способного связаться с субстратом, остается постоянным, а число фактически образующихся ES-комплексов зависит только от концентрации последнего (комплексы EI не постоянны и могут быть вытеснены субстратом).

Конкурентное ингибирование ферментов легко определить по графикам кинетической зависимости, построенным для разных концентраций субстрата. В этом случае величина K m будет меняться, а V max оставаться постоянной величиной.

При неконкурентном ингибировании все наоборот: ингибитор связывается вне активного центра и присутствие субстрата никак не может на это повлиять. В результате часть молекул фермента "выключается" из катализа, и максимально возможная скорость снижается. Тем не менее активные молекулы энзима могут беспрепятственно связываться с субстратом как при маленькой, так и при высокой концентрации последнего. Следовательно, константа Михаэлиса остается постоянной.

Графики конкурентного ингибирования в системе двойных обратных координат представляют собой несколько прямых, пересекающих ось ординат в точке 1/V max . Каждая прямая соответствует определенной концентрации субстрата. Разные точки пересечения с осью абсцисс (1/[S]) говорят об изменении константы Михаэлиса.

Действие конкурентного ингибитора на примере малоната

Типичным примером конкурентного ингибирования является процесс снижения активности сукцинатдегидрогиназы — фермента, катализирующего окисление янтарной кислоты (сукцината) в фумаровую. В роли ингибитора здесь выступает малонат, имеющий структурное сходство с сукцинатом.

Добавление ингибитора в среду вызывает образование комплексов малоната с сукцинатдегидрогиназой. Такая связь не вызывает повреждения активного центра, но блокирует его доступность для янтарной кислоты. Увеличение концентрации сукцината снижает ингибирующий эффект.

Использование в медицине

На механизме конкурентного ингибирования основано действие многих лекарственных препаратов, представляющих собой структурные аналоги субстратов некоторых метаболических путей, торможение которых является необходимой частью лечения заболеваний.

Например, для улучшения проводимости нервных импульсов при мышечных дистрофиях требуется повысить уровень ацетилхолина. Это достигается угнетением активности гидролизующей его ацетилхолинэстеразы. В роли ингибиторов выступают четвертичные аммониевые основания, входящие в состав лекарственных препаратов (прорезин, эндрофоний и т. д.).

В особую группу выделяют антиметаболиты, которые помимо ингибирующего действия проявляют свойства псевдосубстрата. В таком случае формирование комплекса EI приводит к образованию биологически инертного аномального продукта. К антиметаболитам относят сульфаниламиды (используются при лечении бактериальных инфекций), аналоги нуклеотидов (применяются для остановки клеточного роста раковой опухоли) и т. д.

  • 2. Гетеротрофные и аутотрофные организмы: различия по питанию и ис­точникам энергии. Катаболизм и анаболизм.
  • 3. Многомолекулярные системы (метаболические цепи, мембранные про­цессы, системы синтеза биополимеров, молекулярные регуляторные системы) как основные объекты биохимического исследования.
  • 4. Уровни структурной организации живого. Биохимия как молекулярный уровень изучения явлений жизни. Биохимия и медицина (медицинская биохимия).
  • 5. Основные разделы и направления в биохимии: биоорганическая химия, динамическая и функциональная биохимия, молекулярная биология.
  • 6. История изучения белков. Представление о белках как важнейшем клас­се органических веществ и структурно-функциональном компоненте организма человека.
  • 7. Аминокислоты, входящие в состав белков, их строение и свойства. Пеп­тидная связь. Первичная структура белков.
  • 8. Зависимость биологических свойств белков от первичной структуры. Видовая специфичность первичной структуры белков (инсулины разных животных).
  • 9. Конформация пептидных цепей в белках (вторичная и третичная струк­туры). Слабые внутримолекулярные взаимодействия в пептидной цепи; дисульфидные связи.
  • 11. Доменная структура и её роль в функционировании белков. Яды и ле­карства как ингибиторы белков.
  • 12.Четвертичная структура белков. Особенности строения и функциониро­вания олигомерных белков на примере гемсодержащего белка - гемо­глобина.
  • 13.Лабильность пространственной структуры белков и их денатурация. Факторы, вызывающие денатурацию.
  • 14.Шапероны - класс белков, защищающий другие белки от денатурации в условиях клетки и облегчающий формирование их нативной конформации.
  • 15.Многообразие белков. Глобулярные и фибриллярные белки, простые и сложные. Классификация белков по их биологическим функциям и по семействам: (сериновые протеазы, иммуноглобулины).
  • 17.Физико-химические свойства белков. Молекулярный вес, размеры и форма, растворимость, ионизация, гидратация
  • 18.Методы выделения индивидуальных белков: осаждение солями и орга­ническими растворителями, гель-фильтрация, электрофорез, ионооб­менная и аффинная хроматография.
  • 19.Методы количественного измерения белков. Индивидуальные особен­ности белкового состава органов. Изменения белкового состава органов при онтогенезе и болезнях.
  • 21 .Классификация и номенклатура ферментов. Изоферменты. Единицы измерения активности и количества ферментов.
  • 22.Кофакторы ферментов: ионы металлов и коферменты. Коферментные функции витаминов (на примере витаминов в6, рр, в2).
  • 23.Ингибиторы ферментов. Обратимое и необратимое ингибирование. Конкурентное ингибирование. Лекарственные препараты как ингибито­ры ферментов.
  • 25.Регуляция активности ферментов путем фосфорилирования и дефосфорилирования. Участие ферментов в проведении гормонального сигнала.
  • 26.Различия ферментного состава органов и тканей. Органоспецифические ферменты. Изменение ферментов в процессе развития.
  • 27.Изменение активности ферментов при болезнях. Наследственные энзимопатии. Происхождение ферментов крови и значение их определения при болезнях.
  • 29.Обмен веществ: питание, метаболизм и выделение продуктов метабо­лизма. Органические и минеральные компоненты пищи. Основные и минорные компоненты.
  • 30.Основные пищевые вещества: углеводы, жиры, белки, суточная потреб­ность, переваривание; частичная взаимозаменяемость при питании.
  • 31 .Незаменимые компоненты основных пищевых веществ. Незаменимые аминокислоты; пищевая ценность различных пищевых белков. Линолевая кислота - незаменимая жирная кислота.
  • 32.История открытия и изучения витаминов. Классификация витаминов. Функции витаминов.
  • 34.Минеральные вещества пищи. Региональные патологии, связанные с недостаточностью микроэлементов в пище и воде.
  • 35.Понятие о метаболизме и метаболических путях. Ферменты и метабо­лизм. Понятие о регуляции метаболизма. Основные конечные продукты метаболизма у человека
  • 36.Исследования на целых организмах, органах, срезах тканей, гомогенатах, субклеточных структурах и на молекулярном уровне
  • 37.Эндэргонические и экзэргонические реакции в живой клетке. Макроэргические соединения. Примеры.
  • 39.Окислительное фосфорилирование, коэффициент р/о. Строение мито­хондрий и структурная организация дыхательной цепи. Трансмембран­ный электрохимический потенциал.
  • 40.Регуляция цепи переноса электронов (дыхательный контроль). Разоб­щение тканевого дыхания и окислительного фосфорилирования. Терморегуляторная функция тканевого дыхания
  • 42.Образование токсических форм кислорода, механизм их повреждающе­го действия на клетки. Механизмы устранения токсичных форм кисло­рода.
  • 43.Катаболизм основных пищевых веществ - углеводов, жиров, белков. Понятие о специфических путях катаболизма и общих путях катаболиз­ма.
  • 44.Окислительное декарбоксилирование пировиноградной кислоты. По­следовательность реакций. Строение пируватдекарбоксилазного ком­плекса.
  • 45.Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Связь между общими путями катаболизма и цепью переноса электронов и протонов.
  • 46.Механизмы регуляции цитратного цикла. Анаболические функции цик­ла лимонной кислоты. Реакции, пополняющие цитратный цикл
  • 47.Основные углеводы животных, их содержание в тканях, биологическая роль. Основные углеводы пищи. Переваривание углеводов
  • 49. Аэробный распад - основной путь катаболизма глюкозы у человека и других аэробных организмов. Последовательность реакций до образо­вания пирувата (аэробный гликолиз).
  • 50.Распространение и физиологическое значение аэробного распада глю­козы. Использование глюкозы для синтеза жиров в печени и в жировой ткани.
  • 52. Биосинтез глюкозы (глюконеогенез) из аминокислот, глицерина и мо­лочной кислоты. Взаимосвязь гликолиза в мышцах и глюконеогенеза в печени (цикл Кори).
  • 54. Свойства и распространение гликогена как резервного полисахарида. Биосинтез гликогена. Мобилизация гликогена.
  • 55. Особенности обмена глюкозы в разных органах и клетках: эритроциты, мозг, мышцы, жировая ткань, печень.
  • 56. Представление о строении и функциях углеводной части гликолипидов и гликопротеинов. Сиаловые кислоты
  • 57. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, непереносимость фруктозы и дисахаридов. Гликогенозы и агликогенозы
  • Глицеральдегид -3 –фосфат
  • 58. Важнейшие липиды тканей человека. Резервные липиды (жиры) и липиды мембран (сложные липиды). Жирные кислоты липидов тканей человека.
  • Состав жирных кислот подкожного жира человека
  • 59. Незаменимые факторы питания липидной природы. Эссенциальные жирные кислоты: ω-3- и ω-6-кислоты как предшественники синтеза эйкозаноидов.
  • 60.Биосинтез жирных кислот, регуляция метаболизма жирных кислот
  • 61.Химизм реакций β-окисления жирных кислот, энергетический итог.
  • 6З.Пищевые жиры и их переваривание. Всасывание продуктов перевари­вания. Нарушение переваривания и всасывания. Ресинтез триацилглицеринов в стенке кишечника.
  • 64.Образование хиломикронов и транспорт жиров. Роль апопротеинов в составе хиломикронов. Липопротеинлипаза.
  • 65.Биосинтез жиров в печени из углеводов. Структура и состав транспорт­ных липопротеинов крови.
  • 66. Депонирование и мобилизация жиров в жировой ткани. Регуляция син­теза и мобилизации жиров. Роль инсулина, глюкагона и адреналина.
  • 67.Основные фосфолипиды и гликолипиды тканей человека (глицерофосфолипиды, сфингофосфолипиды, гликоглицеролипиды, гликосфиголипиды). Представление о биосинтезе и катаболизме этих соединений.
  • 68.Нарушение обмена нейтрального жира (ожирение), фосфолипидов и гликолипидов. Сфинголипидозы
  • Сфинголипиды, метаболизм: заболевания сфинголипидозы, таблица
  • 69.Строение и биологические функции эйкозаноидов. Биосинтез простагландинов и лейкотриенов.
  • 70.Холестерин как предшественник ряда других стероидов. Представление о биосинтезе холестерина. Написать ход реакций до образования мевалоновой кислоты. Роль гидроксиметилглутарил-КоА-редуктазы.
  • 71.Синтез желчных кислот из холестерина. Конъюгация желчных кислот, первичные и вторичные желчные кислоты. Выведение желчных кислот и холестерина из организма.
  • 72.Лпнп и лпвп - транспортные, формы холестерина в крови, роль в об­мене холестерина. Гиперхолестеринемия. Биохимические основы раз­вития атеросклероза.
  • 73. Механизм возникновения желчнокаменной болезни (холестериновые камни). Применение хенодезокеихолевой кислоты для лечения желчно­каменной болезни.
  • 75. Переваривание белков. Протеиназы - пепсин, трипсин, химотрипсин; проферменты протеиназ и механизмы их превращения в ферменты. Субстратная специфичность протеиназ. Экзопептидазы и эндопептидазы.
  • 76. Диагностическое значение биохимического анализа желудочного и дуоденального сока. Дать краткую характеристику состава этих соков.
  • 77. Протеиназы поджелудочной железы и панкреатиты. Применение инги­биторов протеиназ для лечения панкреатитов.
  • 78. Трансаминирование: аминотрансферазы; коферментная функция вита­мина в6. Специфичность аминотрансфераз.
  • 80. Окислительное дезаминирование аминокислот; глутаматдегидрогеназа. Непрямое дезаминирование аминокислот. Биологическое значение.
  • 82. Глутаминаза почек; образование и выведение солей аммония. Актива­ция глутаминазы почек при ацидозе.
  • 83. Биосинтез мочевины. Связь орнитинового цикла с цтк. Происхожде­ние атомов азота мочевины. Нарушения синтеза и выведения мочеви­ны. Гипераммонемии.
  • 84. Обмен безазотистого остатка аминокислот. Гликогенные и кетогенные аминокислоты. Синтез глюкозы из аминокислот. Синтез аминокислот из глюкозы.
  • 85. Трансметилирование. Метионин и s-аденозилметионин. Синтез креа­тина, адреналина и фосфатидилхолинов
  • 86. Метилирование днк. Представление о метилировании чужеродных и лекарственных соединений.
  • 88. Антивитамины фолиевой кислоты. Механизм действия сульфанила­мидных препаратов.
  • 89. Обмен фенилаланина и тирозина. Фенилкетонурия; биохимический де­фект, проявление болезни, методы предупреждения, диагностика и ле­чение.
  • 90. Алкаптонурия и альбинизм: биохимические дефекты, при которых они развиваются. Нарушение синтеза дофамина, паркинсонизм.
  • 91. Декарбоксилирование аминокислот. Структура биогенных аминов (гистамин, серотонин, γ-аминомасляная кислота, катехоламины). Функции биогенных аминов.
  • 92. Дезаминирование и гидроксилирование биогеных аминов (как реакции обезвреживания этих соединений).
  • 93. Нуклеиновые кислоты, химический состав, строение. Первичная струк­тура днк и рнк, связи, формирующие первичную структуру
  • 94. Вторичная и третичная структура днк. Денатурация, ренативация днк. Гибридизация, видовые различия первичной структуры днк.
  • 95. Рнк, химический состав, уровни структурной организации. Типы рнк, функции. Строение рибосомы.
  • 96. Строение хроматина и хромосомы
  • 97. Распад нуклеиновых кислот. Нуклеазы пищеварительного тракта и тка­ней. Распад пуриновых нуклеотидов.
  • 98. Представление о биосинтезе пуриновых нуклеотидов; начальные ста­дии биосинтеза (от рибозо-5-фосфата до 5-фосфорибозиламина).
  • 99. Инозиновая кислота как предшественник адениловой и гуаниловой ки­слот.
  • 100. Представление о распаде и биосинтезе пиримидиновых нуклеотидов.
  • 101. Нарушения обмена нуклеотидов. Подагра; применение аллопуринола для лечения подагры. Ксантинурия. Оротацидурия.
  • 102. Биосинтез дезоксирибонуклеотидов. Применение ингибиторов синте­за дезоксирибонуклеотидов для лечения злокачественных опухолей.
  • 104. Синтез днк и фазы клеточного деления. Роль циклинов и циклинзависимых протеиназ в продвижении клетки по клеточному циклу.
  • 105. Повреждение и репарация днк. Ферменты днк-репарирующего ком­плекса.
  • 106. Биосинтез рнк. Рнк полимеразы. Понятие о мозаичной структуре ге­нов, первичном транскрипте, посттранскрипционном процессинге.
  • 107. Биологический код, понятия, свойства кода, коллинеарность, сигналы терминации.
  • 108. Роль транспортных рнк в биосинтезе белков. Биосинтез аминоацил-т-рнк. Субстратная специфичность аминоацил-т-рнк-синтетаз.
  • 109. Последовательность событий на рибосоме при сборке полипептидной цепи. Функционирование полирибосом. Посттрансляционный процессинг белков.
  • 110. Адаптивная регуляция генов у про- и эукариотов. Теория оперона. Функционирование оперонов.
  • 111. Понятие о клеточной дифференцировке. Изменение белкового состава клеток при дифференцировке (на примере белкового состава полипеп­тидных цепей гемоглобина).
  • 112. Молекяулрные механизмы генетической изменчивости. Молекуляр­ные мутации: типы, частота, значение
  • 113. Генетическая гетерогенность. Полиморфизм белков в популяции че­ловека (варианты гемоглобина, гликозилтрансферазы, группоспецифических веществ и др).
  • 114. Биохимические основы возникновения и проявления наследственных болезней (разнообразие, распространение).
  • 115. Основные системы межклеточной коммуникации: эндокринная, паракринная, аутокринная регуляция.
  • 116. Роль гормонов в системе регуляции метаболизма. Клетки-мишени и клеточные рецепторы гормонов
  • 117. Механизмы передачи гормональных сигналов в клетки.
  • 118. Классификация гормонов по химическому строению и биологическим функциям
  • 119. Строение, синтез и метаболизм иодтиронинов. Влияние на обмен ве­ществ. Изменение метаболизма при гипо- и гипертиреозе. Причины и проявление эндемического зоба.
  • 120. Регуляция энергетического метаболизма, роль инсулина и контринсулярных гормонов в обеспечении гомеостаза.
  • 121. Изменения метаболизма при сахарном диабете. Патогенез основных симптомов сахарного диабета.
  • 122. Патогенез поздних осложнений сахарного диабета (макро- и микроангиопатии, нефропатия, ретинопатия, катаракта). Диабетическая кома.
  • 123. Регуляция водно-солевого обмена. Строение и функции альдостерона и вазопрессина
  • 124. Система ренин-ангиотензин-альдостерон. Биохимические механизмы возникновения почечной гипертонии, отеков, дегидратации.
  • 125. Роль гормонов в регуляции обмена кальция и фосфатов (паратгормон, кальцитонин). Причины и проявления гипо- и гиперпаратироидизма.
  • 126. Строение, биосинтез и механизм действия кальцитриола. Причины и проявление рахита
  • 127. Строение и секреция кортикостероидов. Изменения катаболизма при гипо- и гиперкортицизме.
  • 128. Регуляция синтезами секреции гормонов по принципу обратной связи.
  • 129. Половые гормоны: строение, влияние на обмен веществ и функции половых желез, матки и молочных желез.
  • 130. Гормон роста, строение, функции.
  • 131. Метаболизм эндогенных и чужеродных токсических веществ: реакции микросомального окисления и реакции конъюгации с глутатионом, глюкуроновой кислотой, серной кислотой.
  • 132. Металлотионеин и обезвреживание ионов тяжелых металлов. Белки теплового шока.
  • 133. Токсичность кислорода: образование активных форм кислорода (су­пероксид анион, перекись водорода, гидроксильный радикал).
  • 135. Биотрансформация лекарственных веществ. Влияние лекарств на ферменты, участвующие в обезвреживании ксенобиотиков.
  • 136. Основы химического канцерогенеза. Представление о некоторых хи­мических канцерогенах: полициклические ароматические углеводоро­ды, ароматические амины, диоксиды, митоксины, нитрозамины.
  • 137. Особенности развития, строения и метаболизма эритроцитов.
  • 138. Транспорт кислорода и диоксида углерода кровью. Гемоглобин плода (HbF) и его физиологическое значение.
  • 139. Полиморфные формы гемоглобинов человека. Гемоглобинопатии. Анемические гипоксии
  • 140. Биосинтез гема и его регуляция. Нарушения синтеза тема. Порфирии.
  • 141. Распад гема. Обезвреживание билирубина. Нарушения обмена били­рубина-желтухи: гемолитическая, обтурационная, печеночно-клеточная. Желтуха новорожденных.
  • 142. Диагностическое значение определения билирубина и других желч­ных пигментов в крови и моче.
  • 143. Обмен железа: всасывание, транспорт кровью, депонирование. Нару­шение обмена железа: железодефицитная анемия, гемохроматоз.
  • 144. Основные белковые фракции плазмы крови и их функции. Значение их определения для диагностики заболеваний. Энзимодиагностика.
  • 145. Свертывающая система крови. Этапы образования фибринового сгу­стка. Внутренний и внешний пути свертывания и их компоненты.
  • 146. Принципы образования и последовательность фукционирования фер­ментных комплексов прокоагулянтного пути. Роль витамина к в свертывании крови.
  • 147. Основные механизмы фибринолиза. Активаторы плазминогена как тромболитические средства. Основаные антикоагулянты крови: анти­тромбин III, макроглобулин, антиконвертин. Гемофилии.
  • 148. Клиническое значение биохимического анализа крови.
  • 149. Основные мембраны клетки и их функции. Общие свойства мембран: жидкостность, поперечная асимметрия, избирательная проницаемость.
  • 150. Липидный состав мембран (фосфолипиды, гликолипиды, холестерин). Роль липидов в формировании липидного бислоя.
  • 151. Белки мембран - интегральные, поверхностные, «заякоренные». Зна­чение посттрансляционных модификаций в образовании функцио­нальных мембранных белков.
  • Обратимое ингибирование Обратимые ингибиторы связываются с ферментом слабыми нековалентными связями и при определённых условиях легко отделяются от фермента. Обратимые ингибиторы бывают конкурентными и неконкурентными.

    Конкурентное ингибирование К конкурентному ингибированию относят обратимое снижение скорости ферментативной реакции, вызванное ингибитором, связывающимся с активным центром фермента и препятствующим образованию фермент-субстратного комплекса. Такой тип ингибирования наблюдают, когда ингибитор - структурный аналог субстрата, в результате возникает конкуренция молекул субстрата и ингибитора за место в активном центре фермента. В этом случае с ферментом взаимодействует либо субстрат, либо ингибитор, образуя комплексы фермент-субстрат (ES) или фермент-ингибитор (EI). При формировании комплекса фермента и ингибитора (EI) продукт реакции не образуется. Для конкурентного типа ингибирования справедливы следующие уравнения:

    Е + S ⇔ ES → E + P,

    Лекарственные препараты как конкурентные ингибиторы Многие лекарственные препараты оказывают своё терапевтическое действие по механизму конкурентного ингибирования. Например, четвертичные аммониевые основания ингибируют ацетилхолинэстеразу, катализирующую реакцию гидролиза ацетилхолина на холин и уксусную кислоту. При добавлении ингибиторов активность ацетилхолинэстеразы уменьшается, концентрация ацетилхолина (субстрата) увеличивается, что сопровождается усилением проведения нервного импульса. Ингибиторы холинэстеразы используют при лечении мышечных дистрофий. Эффективные антихолинэстеразные препараты - прозерин, эндрофоний и др.

    Неконкурентное ингибирование Неконкурентным называют такое ингибирование ферментативной реакции, при котором ингибитор взаимодействует с ферментом в участке, отличном от активного центра. Неконкурентные ингибиторы не являются структурными аналогами субстрата. Неконкурентный ингибитор может связываться либо с ферментом, либо с фермент-субстратным комплексом, образуя неактивный комплекс. Присоединение неконкурентного ингибитора вызывает изменение конформации молекулы фермента таким образом, что нарушается взаимодействие субстрата с активным центром фермента, что приводит к снижению скорости ферментативной реакции.

    Необратимое ингибирование Необратимое ингибирование наблюдают в случае образования ковалентных стабильных связей между молекулой ингибитора и фермента. Чаще всего модификации подвергается активный центр фермента, В результате фермент не может выполнять каталитическую функцию. К необратимым ингибиторам относят ионы тяжёлых металлов, например ртути (Hg 2+), серебра (Ag +) и мышьяка (As 3+), которые в малых концентрациях блокируют сульфгидрильные группы активного центра. Субстрат при этом не может подвергаться химическому превращению. При наличии реактиваторов ферментативная функция восстанавливается. В больших концентрациях ионы тяжёлых металлов вызывают денатурацию белковой молекулы фермента, т.е. приводят к полной инактивации фермента.

    Необратимые ингибиторы ферментов как лекарственные препараты. Пример лекарственного препарата, действие которого основано на необратимом ингибировании ферментов, - широко используемый препарат аспирин. Противовоспалительный нестероидный препарат аспирин обеспечивает фармакологическое действие за счёт ингибирования фермента циклооксигеназы, катализирующего реакцию образования простагландинов из арахидоновой кислоты. В результате химической реакции ацетильный остаток аспирина присоединяется к свободной концевой NH 2 -группе одной из субъединиц циклооксигеназы. Это вызывает снижение образования продуктов реакции простагландинов, которые обладают широким спектром биологических функций, в том числе являются медиаторами воспаления.

    24.Регуляция действия ферментов: аллостерические ингибиторы и актива­торы. Каталитический и регуляторный центры. Четвертичная структура аллостерических ферментов и кооперативные изменения конформации протомеров фермента.

    Аллостерическая регуляция . Во многих строго биосинтетическихреакцияхосновным типом регуляции скорости многоступенчатого ферментативного процесса является ингибирование по принципу обратной связи. Это означает, что конечный продукт биосинтетической цепи подавляетактивность фермента, катализирующего первую стадию синтеза, которая является ключевой для данной цепиреакции. Поскольку конечный продукт структурно отличается отсубстрата, он связывается с аллостери-ческим (некаталитическим) центроммолекулыфермента, вызывая ингиби-рование всей цепи синтетическойреакции.

    Предположим, что в клеткахосуществляется многоступенчатый биосинтетический процесс, каждая стадия которого катализируется собственнымферментом:

    Скорость подобной суммарной последовательности реакцийв значительной степени определяетсяконцентрациейконечного продукта Р, накопление которого выше допустимого уровня оказывает мощное инги-бирующее действие на первую стадию процесса и соответственно наферментE1.

    Следует, однако, иметь в виду, что модуляторами аллостерических ферментовмогут быть какактиваторы, так иингибиторы. Часто оказывается, что самсубстратоказывает активирующий эффект.Ферменты, для которых исубстрат, и модулятор представлены идентичными структурами, носят название гомотропных в отличие от гетеротропныхферментов, для которых модулятор имеет отличную отсубстратаструктуру. Взаимопревращение активного и неактивного аллостерическихферментовв упрощенной форме, а также конфор-мационные изменения, наблюдаемые при присоединениисубстратаи эффекторов. Присоединение отрицательного эффектора к аллостерическому центру вызывает значительные изменения конфигурацииактивного центрамолекулыфермента, в результате чегоферменттеряет сродство к своемусубстрату(образование неактивного комплекса).

    Аллостерические взаимодействия проявляются в характере кривых зависимости начальной скорости реакцииотконцентрациисубстратаили эффектора, в частности в S-образности этих кривых (отклонение от гиперболической кривой Михаэлиса-Ментен). S-образный характер зависимости v от [ S ] в присутствии модулятора обусловлен эффектом кооперативности. Это означает, что связывание одноймолекулысубстратаоблегчает связывание второймолекулывактивном центре, способствуя тем самым увеличениюскорости реакции. Кроме того, для аллостерических регуляторныхферментовхарактерна нелинейная зависимостьскорости реакцииотконцентрациисубстрата.

    "

Различают обратимое и необратимое ингибирование. Если ингибитор вызывает стойкие изменения пространственной третичной структуры молекулы фермента или модификацию функциональных групп фермента, то такой тип ингибирования называется необратимым. Чаще, однако, имеет место обратимое ингибирование, поддающееся количественному изучению на основе уравнения Михаэлиса-Ментен. Обратимое ингибирование в свою очередь разделяют на конкурентное и неконкурентное в зависимости от того, удается или не удается преодолеть торможение ферментативной реакции путем увеличения концентрации субстрата.

Конкурентное ингибирование может быть вызвано веществами, имеющими структуру, похожую на структурусубстрата, но несколько отличающуюся от структуры истинного субстрата. Такое ингибирование основано на связывании ингибитора с субстратсвязывающим (активным) центром. Классическим примером подобного типа ингибирования является торможение сукцинатдегидрогеназы (СДГ) малоновой кислотой. Этот ферменткатализирует окисление путем дегидрирования янтарной кислоты (сукцината) в фумаровую:

Если в среду добавить малонат (ингибитор), то в результате структурного сходства его с истиннымсубстратом сукцинатом (наличие двух таких же ионизированных карбоксильных групп) он будет взаимодействовать с активным центром с образованием фермент-ингибиторного комплекса, однако при этом полностью исключается перенос атома водорода от малоната. Структуры субстрата (сукцинат) и ингибитора(малонат) все же несколько различаются. Поэтому они конкурируют за связывание с активным центром, и степень торможения будет определяться соотношением концентраций малоната и сукцината, а не абсолютной концентрацией ингибитора. Таким образом, ингибитор может обратимо связываться сферментом, образуя фермент-ингибиторный комплекс. Этот тип ингиби-рования иногда называют ингибированием по типу метаболического антагонизма (рис. 4.20).

В общей форме реакция взаимодействия ингибитора с ферментом может быть представлена следующим уравнением:

Образовавшийся комплекс, называемый фермент-ингибиторным комплексом ЕI, в отличие от фермент-субстратного комплекса ES не распадается с образованием продуктов реакции. Константу диссоциациикомплекса EI, или ингибиторную константу К i , можно, следуя теории Михаэлиса–Мен-тен, определить как отношение констант обратной и прямой реакций:

Метод конкурентного торможения нашел широкое применение в медицинской практике. Известно, например, что для лечения некоторых инфекционных заболеваний, вызываемых бактериями, применяютсульфаниламидные препараты. Оказалось, что эти препараты имеют структурное сходство спарааминобензойной кислотой, которую бактериальная клетка использует для синтеза фолиевой кислоты, являющейся составной частью


Рис. 4.20. Действие конкурентного ингибитора (схема по В.Л. Кретовичу). Е - фермент; S - субстрат; Р 1 и Р 2 - продукты реакции; I - ингибитор.

ферментов бактерий. Благодаря этому структурному сходству сульфаниламид блокирует действие ферментапутем вытеснения парааминобензой-ной кислоты из комплекса с ферментом, синтезирующим фолиевую кислоту, что ведет к торможению роста бактерий.

Неконкурентное ингибирование вызывается веществами, не имеющими структурного сходства с субстратами и часто связывающимися не с активным центром, а в другом месте молекулы фермента. Степень торможения во многих случаях определяется продолжительностью действия ингибитора на фермент. При данном типе ингибирования благодаря образованию стабильной ковалентной связи фермент часто подвергается полной инактивации, и тогда торможение становится необратимым. Примером необратимого ингибирования является действие йодацетата, ДФФ, а также диэтил-n-нитрофенилфосфата и солей синильной кислоты. Это действие заключается в связывании и выключении функциональных групп или ионов металлов и молекулефермента.


Типы ингибирования

Регуляция по типу обратной связи.

Путь нековалентной модификации

В состав ферментов кроме активного центра может входить иной центр - аллостерический, к которому мо­гут присоединяться низкомолекулярные вещества и из­менять активность ферментов. Аллостерический (или регуляторный) центр - участок молекулы фермента, с которым связываются низкомолекулярные вещества-эффек­торы (активаторы или ингибиторы). Их структура отлич­на от структуры субстрата. Присоединяясь к аллостерическому центру, эти вещества (эффекторы) могут изме­нять третичную или четвертичную структуры молекулы фермента и соответственно структуру активного центра, вызывая увеличение или уменьшение его активности. Та­ким образом, связывание фермента с эффектором в одном участке белка вызывает изменение структуры и, следова­тельно, активности - в другом.

Активаторы увеличивают активность ферментов, а ингибиторы уменьшают. Часто биохимический процесс состоит из нескольких стадий, которые катализируются своими ферментами. В таких системах есть хотя бы один фермент - регуляторный, который определяет скорость всей последовательности реакций. Регуляторные фермен­ты под действием эффекторов способны включать и вы­ключать целые цепи реакций метаболизма. Соединения, действующие как ингибиторы этих ферментов, обычно являются конечными продуктами всей цепи реакций. Систему регуляции этого типа, когда избыток продукта одной из последовательных реакций биохимического пути ингибирует активность фермента одной из ранних ста­дий, блокируя эту и все последующие стадии, называют ингибированием по типу обратной связи. Таким образом, накопление избытка продукта ведет к торможению его биосинтеза.

Различают обратимое и необратимое ингибирование ферментов. Ингибирование является необратимым, если ингибитор необратимо связывается с ферментом (образо­ванный комплекс субстрат-ингибитор не распадается). Многие ингибиторы необратимо связываются с фермен­тами, изменяя их структуру. Этим объясняется токсич­ное действие ионов металлов: Hg 2+ , Zn 2+ .

Е - SH + Ag + ® Е - S - Ag + H + ;

в противном случае наблюдается обратимое ингибирование. Обратимое ингибирование, может быть конкурент­ное и неконкурентное.

Конкурентное ингибирование наблюдается, когда ин­гибитор и субстрат имеют сходные структуры и конкури­руют за связывание с активным центром фермента. Если к ферменту Е добавить конкурентный ингибитор I и субстрат S, то одновременно образуется два комплекса: фер­мент-ингибитор (EI) и фермент-субстратный (ES). Образо­вание комплекса EI не приводит к образованию продук­тов реакции.

Е + S ® ES ® P + Е;

Е + I ® EI ® не образуются продукты реакции

Скорость реакции уменьшается, потому что при присое­динении ингибитора к активному центру субстрата умень­шается число активных центров фермента, способных вза­имодействовать с природным субстратом. Поскольку конкурентный ингибитор связывается обратимо, с фер­ментом, то уменьшить его действие можно, увеличивая концентрацию субстрата, так как при этом увеличивает­ся вероятность связывания фермента с субстратом.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «api-clinic.ru» — Центр естественной медицины