Цитокины и воспаление. Цитокины при заболеваниях органов пищеварения Активные цитокины участвующие в воспалительных процессах

Цитокины – вещества белковой природы с низкой молекулярной массой, которые вырабатываются практически всеми иммунными клетками. Они служат своеобразными химическими медиаторами в пределах иммунной системы. Но их нельзя назвать только иммунными факторами, поскольку они принимают участие в процессах кроветворения, межсистемной передаче сигналов и обладают способностью взаимодействовать с клетками других органов и систем, что позволяет поддерживать постоянство внутренней среды. Эти субстанции обеспечивают управление реакциями воспаления и гиперчувствительности, в определенных условиях способствуют повреждению собственных тканей организма.

Цитокины представляют собой важные компоненты воспалительного процесса, необходимые для реализации защитных функций иммунной системы. В развитии этих реакций участвуют провоспалительные цитокины, факторы роста, хемокины. Однако в некоторых случаях необходимо подавлять и сдерживать воспалительный процесс. Для этого существуют противовоспалительные цитокины.

Общие свойства

Цитокин связывается с рецептором на мембране клетки, что стимулирует клетку выполнить ее функцию.

Все цитокины имеют не только свои индивидуальные особенности, но и обладают общими функциональными чертами:

  • Для выполнения своей функции они связываются со специфическим рецептором на мембране клеток.
  • Одни из них взаимодействуют с различными клетками-мишенями, другие – только с определенными клеточными линиями.
  • Синтез этих веществ происходит импульсивно. Они имеют достаточно короткий период полураспада и непродолжительное действие.
  • Цитокины эффективны в очень малых концентрациях.
  • Они могут вызывать местные реакции или оказывать системное влияние.
  • Цитокины взаимодействуют между собой. Так, один из них может влиять на деятельность другого, стимулируя, усиливая или ослабляя ее.
  • Для них характерны перекрывающиеся избыточные функции (один и тот же эффект вызывает несколько цитокинов).
  • Одна и та же клетка способна вырабатывать различные цитокины.
  • Один вид цитокинов может продуцироваться различными клетками.

Провоспалительные цитокины

Цитокины, обладающие провоспалительной активностью, начинают секретироваться в организме в результате повреждения или проникновения инфекционного агента. Их вырабатывают активированные лимфоциты, клетки моноцитарного ряда, дендритные клетки и др. Наиболее важными представителями этой группы цитокинов являются:

  • интерлейкин-1;
  • интерлейкин-6;
  • фактор некроза опухоли α;
  • интерлейкин-17 и 18.

Цитокины, ответственные за воспалительную реакцию, синтезируются и секретируются в патологический очаг достаточно быстро. Они появляются там уже в течение часа и начинают оказывать свое действие, формируя зону воспаления:

  • индуцируют экспрессию мембранных рецепторов, чувствительных к факторам воспаления;
  • усиливают перемещение лейкоцитов из кровеносного русла в патологический очаг;
  • стимулируют синтез других цитокинов со сходным действием;
  • вызывают лихорадку;
  • повышают продукцию белковых субстанций острой фазы воспаления;
  • активируют деятельность нервной системы и желез внутренней секреции.

Следует отметить, что в высоких концентрациях эти вещества способны вызывать патологические реакции. Наиболее ярким их примером является септический шок.

Интерлейкин-1 объединяет в себе около 11 классов белковых молекул. 5 из них являются акивными цитокинами, функции остальных не известны. Мишенями для интерлейкина-1 могут быть любые клетки организма, однако в наибольшей степени к нему чувствительны:

  • эндотелий сосудов;
  • лейкоциты;
  • хондроциты;
  • эпителиальные клетки;
  • нервная ткань.

Под его влиянием в организме реализуется более 50 видов биологических реакций. Он активирует все провоспалительные гены, вызывает миграцию клеток лейкоцитарного ряда в очаг воспаления, повышая при этом их фагоцитарную активность и бактерицидное действие. Также он воздействует на сосудистый тонус и кровообращение в этой области. Кроме того, интерлейкин-1 оказывает множественные системные эффекты:

  • воздействует на гипоталамус и вызывает температурную реакцию;
  • принимает участие в развитии общих проявлений воспалительного процесса (общая слабость, адинамия, плохой аппетит, сонливость);
  • усиливает ;
  • стимулирует выход гранулоцитов из кроветворной зоны костного мозга;
  • при поражении хрящевой и костной ткани может вызывать их деструкцию и др.

Интерлейкин-6 является цитокином широкого действия. Он принимает участие в индукции практически всего комплекса местных воспалительных реакций, но действие его слабее, чем интерлейкина-1 или ФНО-α. Однако он не повышает продукцию других цитокинов, а наоборот, угнетает ее, сочетая таким образом в себе противоположные свойства про- и противовоспалительных цитокинов.

Фактор некроза опухоли α вырабатывается в организме преимущественно клетками моноцитарно-макрофагальной системы. Этот цитокин имеет достаточно широкий спектр активности. Он первым появляется в крови после индукции воспаления (среди всех провоспалительных цитокинов). Его действие сходно с эффектами интерлейкина-1, однако является более выраженным. Он также усиливает экспрессию молекул адгезии, синтез различных факторов воспаления, ускоряет перемещение лейкоцитов и активирует их. Кроме того, он усиливает бактериальный потенциал фагоцитов и стимулирует рост и развитие фибробластов. При повышенной местной концентрации ФНО-α происходит повреждение тканей, а при возрастании его концентрации в крови развиваются тяжелые токсические эффекты.

Противовоспалительные цитокины

Наряду с существованием факторов, вызывающих воспалительную реакцию, в организме человека вырабатываются цитокины, которые способны подавлять ее. Соотношение между ними – важный момент регуляции возникновения и развития воспаления, ведь от этого зависит не только течение патологического процесса, но и его исход. Основными представителями этой группы цитокинов являются:

  • интерлейкин-4;
  • интерлейкин-10;
  • интерлейкин-13;
  • трансформирующий фактор роста бета.

Интерлейкин-4 вырабатывается Т-хелперами 2 типа. Он является антагонистом γ-интерферона, подавляет секрецию ФНО-α, интерлейкина-1, интерлейкина-6 и угнетает активность макрофагов и Т-лимфоцитов. Совместно с другими цитокинами он способствует пролиферации тканевых базофилов.

Также Т-хелперы 2 типа вырабатывают интерлейкин-10 и 13, которые снижают синтез цитокинов, отвечающих за развитие воспаления, и усиливают пролиферацию тучных клеток и В-лифоцитов. В итоге угнетается клеточный иммунитет и стимулируется гуморальный (выработка антител).

Трансформирующий фактор роста бета синтезируется различными типами клеток, включая макрофаги и лимфоциты. Основной его функцией считается подавление активности и роста Т-лимфоцитов, а также макрофагов, нейтрофилов, естественных киллеров. Он угнетает иммунный ответ и стимулирует репаративные процессы в организме за счет усиления синтеза коллагена.

Заключение


Интерлейкин 13 - цитокин, обусловливающий угнетение воспалительного процесса.

Роль цитокинов в организме очень велика. Учитывая их многообразные регуляторные свойства, становится понятно, что недостаточная или избыточная секреция этих веществ имеет значение при различных заболеваниях и патологических процессах. В настоящее время на основе цитокинов и их рецепторов разрабатываются лекарственные препараты, которые используются в онкологии, трансплантологии и других отраслях медицины.

Введение

    Общие сведения

    Классификация цитокинов

    Рецепторы цитокинов

    Цитокины и регуляция иммунного ответа

    Заключение

    Литература

Введение

Цитокины – одна из важнейших частей иммунной системы. Иммунной системе необходима система оповещения от клеток организма, как крик о помощи. Это, пожалуй, лучшее определение цитокинов. Когда клетка повреждена или поражена патогенным организмом, макрофаги и поврежденные клетки выделяют цитокины. Сюда входят такие факторы, как интерлейкин, интерферон и фактор некроза опухоли-альфа. Последний также доказывает, что разрушение опухолевой ткани контролируется иммунной системой. Когда цитокины выделяются, они призывают особые иммунные клетки, например, лейкоциты и Т- и В-клетки.

Цитокины также дают сигнал о какой-то конкретной цели, которую данные клетки должны выполнить. Цитокины и антитела абсолютно различны, так как антитела – это то, что связано с антигенами, они позволяют иммунной системе идентифицировать вторжение инородных организмов. Таким образом, можно провести аналогию: цитокины являются главным сигналом тревоги для захватчиков, а антитела – разведчиками. Процесс анализа цитокинов называется определением цитокинов.

Общие сведения

Цитокины (cytokines) [греч. kytos - сосуд, здесь - клетка и kineo - двигаю, побуждаю] - большая и разнообразная группа небольших по размерам (молекулярная масса от 8 до 80 кДа) медиаторов белковой природы - молекул-посредников («белков связи»), участвующих в межклеточной передаче сигналов преимущественно в иммунной системе.

К цитокинам относят фактор некроза опухоли, интерфероны, ряд интерлейкинов и др. Цитокины, которые синтезируются лимфоцитами и являются регуляторами пролиферации и дифференцировки, в частности гематопоэтических клеток и клеток иммунной системы, называют лимфокинами.

Все клетки иммунной системы имеют определенные функции и работают в четко согласованном взаимодействии, которое обеспечивается специальными биологически активными веществами - цитокинами - регуляторами иммунных реакций. Цитокины - это специфические белки, с помощью которых разнообразные клетки иммунной системы могут обмениваться друг с другом информацией и осуществлять координацию действий.

Набор и количества цитокинов, действующих на рецепторы клеточной поверхности, - "цитокиновая среда" - представляют собой матрицу взаимодействующих и часто меняющихся сигналов. Эти сигналы носят сложный характер из-за большого разнообразия цитокиновых рецепторов и из-за того, что каждый из цитокинов может активировать или подавлять несколько процессов, включая свой собственный синтез и синтез других цитокинов, а также образование и появление на поверхности клеток цитокиновых рецепторов.

Межклеточная сигнализация в иммунной системе осуществляется путем непосредственного контактного взаимодействия клеток или с помощью медиаторов межклеточных взаимодействий. При изучении дифференцировки иммунокомпетентных и гемопоэтических клеток, а также механизмов межклеточного взаимодействия, формирующих иммунный ответ, и была открыта большая и разнообразная группа растворимых медиаторов белковой природы - молекул-посредников ("белков связи"), участвующих в межклеточной передаче сигналов - цитокинов.

Гормоны обычно исключают из этой категории на основании эндокринного (а не паракринного или аутокринного) характера их действия. (см. Цитокины: механизмы проведения гормонального сигнала). Вместе с гормонами и нейромедиаторами они составляют основу языка химической сигнализации, путем которой в многоклеточном организме регулируется морфогенез и регенерация тканей.

В положительной и отрицательной регуляции иммунного ответа им принадлежит центральная роль. К настоящему времени у человека обнаружено и изучено в той или иной степени, как уже упоминалось выше, более ста цитокинов, и постоянно появляются сообщения об открытии новых. Для некоторых получены генно-инженерные аналоги. Цитокины действуют через активацию рецепторов цитокинов.

К основным противовоспалительным цитокинам относятся IL-4, IL-10, IL-13, GTRиRAIL-1.Вместе с тем, к этой же группе могут быть причислены и другие цитокины, входящие в состав семейства, регулирующего специфический иммунный ответ, или активно участвующие в регуляции миеломоноцитопоэза и лимфопоэза.

Приведем краткие сведения об основных противовоспалительных цитокинах.

IL-4 вырабатывается Тh2, Тh3, тучными клетками, базофилами, В-лимфоцитами и стромальными клетками костного мозга. Матричная РНКIL-4 появляется через 4 часа после стимуляции Тh 2 и Тh 3 . Одновременно с этим определяется и первая минимальная концентрацияIL-4 в кровотоке. ВыработкаIL-4 достигает максимальных величин через 48 часов с момента начала стимуляции Т-хелперов.

IL-4 обладает чрезвычайно широким спектром действия. Известно, что к этому лимфокину на различных клетках организма находится рецептор, способный вступать в реакцию с такими цитокинами, какIL-1и,IL-13,Ifи,TNF, лимфотоксинами (Lt)и, благодаря чему проявляются конкурентные отношения между про- и противовоспалительными цитокинами.

IL-4 вызывает активацию, пролиферацию и дифференцировку Т- и В-лимфоцитов. Под его влиянием происходит переход клеток-предшественников в CTL. Он является ключевой регуляторной молекулой, запускающей процессы роста и дифференцировки В-лимфоцитов в продуценты иммуноглобулинов. Под его воздействием селективно стимулируется секрецияIgG1 иIgE.IL-4 участвует в активации тучных клеток и, кроме того, препятствует окислительному взрыву в макрофагах. Этот лимфокин усиливает хемотаксис и адгезивные свойства лейкоцитов, а также синтез и секрециюG-CSFи M-CSFмоноцитами и макрофагами. Он оказывает влияние на выработку фибробластами кожи основного хемотаксина для эозинофилов, названный эотаксином. ПрисутствиеIL-4 вызывает «кислородный взрыв» в лейкоцитах. Он также стимулирует цитотоксический (цитостатический)эффект этих клеток.

Вместе с тем, IL-4 ингибирует функции моноцитов, макрофагов и NК-лимфоцитов, блокируя и спонтанную, и стимулированную продукцию провоспалительных цитокинов –IL-1, IL-6,TNFи If. Под его воздействием угнетается влияние TNFна способность макрофагов продуцировать синтазу оксида азота.

IL-4ингибирует передачу индуцируемых Ifсигналов, но не влияет на синергическое действие вируса герпеса и TNF.

За последние годы интерес к IL-4значительно возрос, ибо обнаружено его выраженное противоопухолевое действие. Однако механизм этого явления пока нуждается в дальнейшем тщательном изучении.

IL -10 представляет собой гомодимер с молекулярной массой от 35 до 40 кДа. Он продуцируетсяCD8+, Тh1 и Тh2. Кроме того,IL-10может в небольших количествах образовываться макрофагами и В-лимфоцитами. Под влиянием IL-2 в культуре усиливается выработка IL-10 как покоящимися Т-клетками, так и Т-клетками, стимулированными Ат к СD3. Следовательно, IL-2 усиливает выработку IL-10, который, в свою очередь, подавляет его секрецию. Синтез IL-10 стимулируется также IL-4, IL-7 и IL-15.

IL-10 вызывает пролиферацию и дифференцировку Т- и В-лимфоцитов и ингибирует активность Тh1. Под его воздействием подавляется антигенпрезентирующая функция макрофагов, так как снижается на них экспрессия МНС 2 класса. Способность IL-10 угнетать продукцию IL-1, IL-6, IL-8, G-CSF,GM-CSF, TNF, IFиIfсвязана с его супрессирующим влиянием на синтезIL-12.

IL-10является мощным ингибитором противоопухолевой цитотоксичности циркулирующих моноцитов и альвеолярных макрофагов человека.

При стимуляции макрофаги секретируют вначале провоспалительные цитокины, в том числе IL-12, и лишь впоследствии сравнительно небольшое количество IL-10. Однако при действии на макрофаги иммунных комплексов продукция IL-10 может резко возрастать, что ведет к снижению противоинфекционной защиты и развитию хронических инфекций.

В опытах in vitroустановлено, что IL-10 тормозит антимикобактериальную активность макрофагов, угнетает выработку Ifи способствует внутриклеточному переживанию микобактерий. Показано, что этот эффект может быть связан с ослаблением экспрессииCD80 (B7-1), в результате чего не передается сигнал на кластерCD28 Т-клеток.

За последние годы получены факты, позволяющие считать, что эндогенный и экзогенный IL-10 усиливает секрецию NOстимулированными макрофагами.

IL-10 является иммунодепрессантом. Он также ингибирует цитотоксическую активность, что связано с супрессией костимуляторной функции АПК. В то же время IL-10 усиливает рост активированных CD8+. Следовательно, IL-10 по-разному воздействует на Т-клетки, что зависит от того, в каком состоянии они находятся (активированы или не активированы).

Под действием IL-10усиливается продукцияIgG иIgAактивированными В-клетками.

IL -13 представляет собой полипептид, состоящий из 112 аминокислот. Онвыделяется активированными Тh2, CTL (CD8+), базофилами и тучными клетками. Секреция IL-13 чувствительна к ингибитору протеинкиназы С. Этот цитокин, как и многие другие интерлейкины, обладает выраженным плейотропным влиянием.

IL-13по механизму своего действия напоминаетIL-4.Он вызывает на В-лимфоцитах экспрессиюHLA-антигенов 2 класса, а такжеCD23, CD71, CD72. Под его влиянием на моноцитах наступает экспрессия антигеновHLA-2. IL-13стимулирует антигенпрезентирующую функцию макрофагов и повышает адгезию и выживаемость моноцитов. Кроме того, он является фактором роста В-лимфоцитов и способствует переключению синтеза сIgM наIgG4или IgE.Как иIL-4 и IL-10, он блокирует продукцию макрофагами провоспалительных цитокинов –IL-1, IL-6, IL-8 и противовоспалительных цитокиновIL-10,TNF, G-CSF, GM-CSF.

IL-13 индуцирует синтезNK-лимфоцитами IF, но ингибирует ответNKклеток на действиеIL-2. Он также является активатором эозинофилов и, кроме того, увеличивает продукцию IgE. Благодаря действиюIL-13 продлевается выживание трансплантата и, следовательно, блокируется деятельность CTL.

TGF (трансформирующий фактор роста) является важнейшим противовоспалительнымцитокином.Так,мыши с искусственным дефектом продукцииTGFбыстро погибают при явлении генерализованного воспаления и некроза тканей, ибо при этом не проявляется противовоспалительное действие данного цитокина.

TGFпродуцируется многими клетками, в том числе моноцитами, макрофагами, эозинофилами, активированными Т- и В-лимфоцитами. Основные его функции сводятся к участию в воспалительных реакциях. Существенная роль отводится данному цитокину в процессе репарации тканей. Он усиливает рост фибробластов и синтез коллагена, но является ингибитором дифференцировки и клеточного деления Т- и В-лимфоцитов, а такжеNK-клеток. Подавляя функцию многих клеток, в том числе Тh1, CTL,NК-лимфоцитов, лимфокинактивированных киллеров (так называемыхLAK-клеток),TGFприводит к супрессии иммунного ответа. Этот цитокин ингибирует секрециюIgG, усиливая образование IgAплазматическими клетками.

Выработка TGFповышается под влиянием IL-3 и IL-5, но уменьшается под действием IL-4. Предполагается, что IL-4 может выполнять роль физиологического модулярного переключателя экспрессии TGF в эозинофилах при раневом процессе или канцерогенезе.

Цитокины - ключевые гуморальные факторы воспаления, необходимые для реализации защитных функций врожденного иммунитета. В развитии воспаления участвуют три группы цитокинов - воспалительные, или провоспалительные цитокины, хемокины, колониестимулирующие факторы, а также функционально связанные факторы IL-12 и IFNy. Цитокинам также принадлежит важная роль в подавлении и сдерживании воспалительной реакции. К противовоспалительным цитокинам относят трансформирующий фактор роста в (TGFp), IL-10; часто роль противовоспалительного фактора играет IL-4.
Выделяют 3 основных представителя группы провоспалительных цитокинов - TNFa, IL-1 и IL-6; относительно недавно к ним были добавлены IL-17 и IL-18. Эти цитокины продуцируются в основном активированными моноцитами и макрофагами преимущественно в очаге воспаления. Провоспалительные цитокины могут вырабатываться также нейтрофилами, дендритными клетками, активированными В-, NK- и Т-лимфоцитами. В очаге проникновения патогенов цитокины первыми начинают синтезировать немногочисленные местные воспалительные макрофаги. Затем в процессе эмиграции лейкоцитов из кровотока численность клеток-продуцентов возрастает и их спектр расширяется. В частности, к синтезу провоспалительных цитокинов подключаются стимулированные продуктами микроорганизмов и факторами воспаления эпителиальные, эндотелиальные, синовиальные, глиальные клетки, фибробласты. Гены цитокинов относят к индуцибельным. Естественные индукторы их экспрессии - патогены и их продукты, действующие через TLR и другие патогенраспознающие рецепторы. Классический индуктор - бактериальный ЛПС. В то же время некоторые провоспалительные цитокины (IL-1, TNFa) сами способны индуцировать синтез провоспалительных цитокинов.
Провоспалительные цитокины синтезируются и секретируются достаточно быстро, хотя кинетика синтеза различных цитокинов этой группы неодинакова. В типичных случаях (быстрый вариант) экспрессию их мРНК отмечают через 15-30 мин после индукции, появление белкового продукта в цитоплазме - через 30-60 мин, содержание его во внеклеточной среде достигает максимума через 3-4 ч. Синтез цитокинов конкретной клеткой продолжается довольно непродолжительное время - обычно немногим больше суток. Не весь синтезируемый материал секретируется. Некоторое количество цитокинов экспрессируется на поверхности клетки или содержится в цитоплазматических гранулах. Выброс гранул могут вызывать те же активирующие сигналы, что и продукция цитокинов. Это обеспечивает быстрое (в течение 20 мин) поступление цитокинов в очаг поражения.
Провоспалительные цитокины выполняют многие функции. Основная их роль - «организация» воспалительной реакции (рис. 2.55). Один из наиболее важных и ранних эффектов провоспалительных цитокинов - усиление экспрессии молекул адгезии на эндотелиальных клетках, а также на самих лейкоцитах, что приводит к миграции в очаг воспаления лейкоцитов из кровяного русла (см. раздел 2.3.3). Кроме того, цитокины индуцируют усиление кислородного метаболизма клеток, экспрессии ими рецепторов для цитокинов и других факторов воспаления, стимуляцию выработки цитокинов, бактерицидных пептидов и т.д. Провоспалительные цитокины оказывают преимущественно местное действие. Попадание избыточно секретируемых провоспалительных цитокинов в циркуляцию способствует проявлению системных эффектов воспаления, а также стимулирует выработку цитокинов клетками, отдаленными от очага воспаления. На системном уровне провоспалительные цитокины стимулируют продукцию белков острой фазы, вызывают повышение температуры тела, действуют на

Рис. 2.55. Внутриклеточная передача сигнала, запускаемая провоспалительными цитокинами и механизмы активации провоспалительных генов

эндокринную и нервную системы, а в высоких дозах приводят к развитию патологических эффектов (плоть до шока, подобного септическому).
IL-1 - собирательное обозначение семейства белков, включающего более 11 молекул. Функция большинства из них неизвестна, однако 5 молекул - IL-1a (по современной классификации - IL-1F1), IL-1p (IL-1F2), IL-1RA (IL-1F3), IL-18 (IL-1F4) и IL-33 (IL-1F11) - активные цитокины.
IL-1a и IL-1P традиционно называют IL-1, поскольку они взаимодействуют с одним и тем же рецептором и их эффекты неразличимы. Гены этих цитокинов локализованы в длинном плече хромосомы 2 человека. Гомология между ними на нуклеотидном уровне составляет 45%, на аминокислотном - 26%. Обе молекулы имеют р-складчатую структуру: они содержат 6 пар антипараллельных р-слоев и имеют форму трилистника. Клетки синтезируют молекулу-предшественник с молекулярной массой около 30 кДа, лишенную сигнальных пептидов, что свидетельствует о необычном пути процессинга молекулы IL-1. Молекулярная масса зрелых белков - около 18 кДа.
IL-1a существует в трех формах - внутриклеточной (растворимая молекула присутствует в цитозоле и выполняет регуляторные функции), мембранной (молекула доставляется на поверхность клетки за счет механизма, аналогичного рециклингу рецепторов и заякоривается в мембране) и секре- тиуремой (молекула секретируется в первоначальном виде, но подвергается процессингу - расщеплению внеклеточными протеазами с образованием активного цитокина массой 18 кДа). Основной вариант молекулы IL-1a у человека - мембранный. В такой форме действие цитокина более выражено, но проявляется только локально.
Процессинг IL-1P происходит внутри клетки с участием специализированного фермента - IL-1-конвертазы (каспазы 1), находящегося в лизосомах.
Активация этого фермента осуществляется в составе инфламмосомы - временной надмолекулярной структуры, включающей, кроме неактивной каспазы 1, внутриклеточные рецепторы семейства NLR (см. раздел 2.2.3) - NOD1, NOD2, IPAF и др. Для активации каспазы 1 необходимо распознавание названными рецепторами PAMP, что вызвает развитие активационного сигнала. В результате происходит образование транскрипционного фактора NF-kB и индукция провоспалительных генов, а также активация инфламмосомы и содержащейся в ней каспазы 1. Активированный фермент расщепляет молекулу-предшественницу IL-1P, и образовавшийся зрелый цитокин с молекулярной массой 18 кДа секретируется клеткой.
IL-1a, IL-1P, а также рецепторный антагонист IL-1 имеют общие рецепторы, экспрессируемые спонтанно на многих типах клеток. При активации клеток на них возрастает число мембранных рецепторов для IL-1. Основной из них - IL-1RI - во внеклеточной части содержит 3 иммуноглобулиноподобных домена. Его внутриклеточная часть представляет TIR- домен, структурно сходный с аналогичными доменами TLR и запускающий те же сигнальные пути (см. раздел 2.2.1). Число этих рецепторов невелико (200-300 на клетку), но они обладают высоким сродством к IL-1 (Kd равен 10-11 М). Другой рецептор - IL-1RII - лишен сигнальной составляющей в цитоплазматической части, не передает сигнал и служит рецептором-ловушкой. В передаче сигнала от IL-1RI принимают участие те же факторы, что и для TLR (например, MyD88, IRAK и TRAF6), что приводит к аналогичным результатам - образованию транскрипционных факторов NF-kB и АР-1, вызывающих экспрессию одного и того же набора генов (см. рис. 2.12). Эти гены отвечают за синтез провоспалительных цитокинов, хемокинов, молекул адгезии, ферментов, обеспечивающих бактерицидность фагоцитов, и других генов, продукты которых участвуют в развитии воспалительной реакции. К продуктам, секрецию которых индуцируют IL-1, принадлежит и сам IL-1, т.е. в данном случае срабатывает петля положительной обратной связи.
Мишенями IL-1 потенциально могут быть любые клетки организма. В наибольшей степени его действие затрагивает эндотелиальные клетки, все виды лейкоцитов, клетки хрящевой и костной тканей, синовиальные и эпителиальные клетки, многие разновидности нервных клеток. Под влиянием IL-1 происходит индукция экспрессии больше 100 генов; с его участием реализуется больше 50 различных биологических реакций. Основные эффекты IL-1 вызывают эмиграцию лейкоцитов и активацию их фагоцитарной и бактерицидной активности. Они влияют также на свертывающую систему и сосудистый тонус, определяя особенности гемодинамики в очаге воспаления. IL-1 оказывает многоплановое действие на клетки не только врожденного, но и адаптивного иммунитета, обычно стимулируя проявления и того, и другого.
IL-1 обладает множеством системных эффектов. Он стимулирует выработку гепатоцитами белков острой фазы, при действии на центр терморегуляции гипоталамуса вызывает развитие лихорадки, участвует в развитии системных проявлений воспалительного процесса (например, в недомогании, снижении аппетита, сонливости, адинамии), что связано с действием IL-1 на ЦНС. Усиливая экспрессию рецепторов для колониестимулирующих факторов, IL-1 способствует усилению гемопоэза, с чем связано его радиозащитное действие. IL-1 стимулирует выход из костного мозга лейкоцитов, в первую очередь нейтрофилов, в том числе незрелых, что приводит к появлению при воспалении лейкоцитоза и сдвигу лейкоцитарной формулы влево (накопление незрелых форм клеток). Эффекты IL-1 влияют на вегетативные функции и даже на высшую нервную деятельность (изменение поведенческих реакций и т.д.). Мишенями IL-1 могут быть также хондроциты и осте- оциты, с чем связана способность IL-1 вызывать разрушение хряща и кости при их вовлечении в воспалительный процесс и наоборот, гиперплазия патологических тканей (паннус при ревматоидном артрите). Повреждающее действие IL-1 проявляется и при септическом шоке, повреждении суставов при ревматоидном артрите и ряде других патологических процессов.
Дублирование IL-1 эффектов бактериальных продуктов связано с потребностью в многократном воспроизведении активирующего эффекта патогенов без их диссеминации. Микроорганизмы стимулируют только клетки, находящиеся в непосредственной близости от места проникновения, прежде всего локальные макрофаги. Затем тот же эффект многократно воспроизводится молекулами IL-1p. Выполнение IL-1 указанной функции облегчается экспрессией их рецепторов почти всеми клетками организма при активации (происходит прежде всего в очаге воспаления).
Рецепторный антагонист IL-1 (IL-1RA) гомологичен IL-1a и IL-1P (гомология составляет соответственно 26% и 19%). Он взаимодействует с рецепторами IL-1, но не способен передавать в клетку сигнал. В результате IL-1RA выступает в роле специфического антагониста IL-1. IL-1RA секретируют те же клетки, что и IL-1, этот процесс не требует участия каспазы 1. Выработку IL-1RA индуцируют те же факторы, что и синтез IL-1, однако некоторое его количество спонтанно продуцируют макрофаги и гепатоциты. В результате этот фактор постоянно присутствует в сыворотке крови. Вероятно, это необходимо для предотвращения негативных последствий системного действия IL-1, вырабатываемого в значительных количествах при остром воспалении. В настоящее время проводят испытания рекомбинантного IL-1RA в качестве лекарственного препарата при лечении хронических воспалительных заболеваний (ревматоидный артрит и т.д.)
IL-18 - провоспалительный цитокин, родственный IL-ф: он также синтезируется в виде предшественника, конвертируемого с участием каспазы 1; взаимодействует с рецептором, цитоплазматическая часть которого содержит домен TIR и передает сигнал, приводящий к активации NF-kB. В результате происходит активация всех провоспалительных генов, однако она выражена слабее, чем при действии IL-1. Отдельное свойство IL-18 - индукция (особенно в сочетании с IL-12) синтеза клетками IFNy. В отсутствие IL-12 IL-18 индуцирует синтез антагониста IFNy - IL-4 и способствует развитию аллергических реакций. Действие IL-18 ограничивает растворимый антагонист, связывающий его в жидкой фазе.
IL-33 структурно очень близок IL-18. Процессинг IL-33 тоже происходит с участием каспазы 1. Однако этот цитокин отличается от других представителей семейства IL-1 выполняемыми функциями. Своеобразие действия IL-33 значительной степени обусловлено тем, что его рецептор экспрессируется избирательно на ^2-клетках. В связи с этим IL-33 способствует секреции ^2-цитокинов IL-4, IL-5, IL-13 и развитию аллергических процессов. Он не оказывает существенного провоспалительного действия.
Фактор некроза опухоли а (ФНОа или TNFa) - представитель другого семейства иммунологически значимых белков. Это провоспалительный цитокин с широким спектром активности. TNFa имеет в-складчатую структуру. Он синтезируется в виде функционально активной мембранной молекулы про-TNFa с молекулярной массой 27 кДа, представляющей трансмембранный белок II типа (т.е. его N-концевая часть направлена внутрь клетки). В результате протеолиза во внеклеточном домене формируется растворимый мономер с молекулярной массой 17 кДа. Мономеры TNFa спонтанно формируют тример с молекулярной массой 52 кДа, представляющий основную форму этого цитокина. Тример имеет колоколовидную форму, причем субъединицы соединяются своими С-концами, содержащими по 3 участка связывания с рецептором, тогда как N-концы друг с другом не связаны и не участвуют во взаимодействии с рецепторами (а следовательно, и в выполнении цитокином своих функций). При кислых значениях рН TNFa приобретает a-спиральную структуру, что обусловливает изменение некоторых его функций, в частности, усиление цитотоксичности. TNF - прототипический член большого семейства молекул суперсемейства TNF (табл. 2.31). К нему относят лимфотоксины a и в (в растворимой форме существует только первый), а также многие мембранные молекулы, участвующие в межклеточных взаимодействиях (CD154, FasL, BAFF, OX40-L, TRAIL, APRIL, LIGHT), которые будут упоминаться далее в различных контекстах. Согласно современной номенклатуре, название членов суперсемейства состоит из сокращения TNFSF и порядкового номера (для TNFa - TNFSF2, для лимфотоксина a - TNFSF1).
Таблица 2.31. Основные представители семейств фактора некроза опухоли и его рецепторов


Фактор (лиганд)

Хро
мосома

Молекулярная масса, кДа

Рецептор

TNFa (TNFSF2)


17; тример - 52; гликозилирован- ная форма - 25,6

TNF-R1, TNF-R2 (TNFRSF1, TNFRSF2)

Лимфотоксинa (TNFSF1)


22,3

TNF-R1, TNF-R2

Лимфотоксин в (TNFSF3)


25,4

LTp-R (TNFRSF3)

OX-40L (TNFSF4)

1q

34,0

OX-40 (TNFRSF4; CD134)

CD40L (TNFSF5; CD154)

Xp

39,0

CD40 (TNFRSF5)

FasL (TNFSF6; CD178)

1q

31,5

Fas/APO-1 (CD95) (TNFRSF6)

CD27L (TNFSF7, CD70)

19p

50,0

CD27 (TNFRSF7)

CD30L (TNFSF8)

9q

40,0

CD30 (TNFRSF8)

4-1BBL (TNFSF9)

19p

27,5

4-1BB (TNFRSF9; CD137)

TRAIL (TNFSF10)

3q

32,0

ВК4б ВК5

APRIL (TNFSF13)

17p

27,0

BCMA, TACI

LIGHT (TNFSF14)

16q

26,0

HVEM (TNFRSF14)

GITRL (TNFSF18)

1p

22,7

GITR (TNFRSF18)

BAFF (TNFSF20)

13

31,2

BAFFR, TACI, BCMA

Основные продуценты TNFa, как и IL-1, - моноциты и макрофаги. Его секретируют также нейтрофилы, эндотелиальные и эпителиальные клетки, эозинофилы, тучные клетки, В- и Т-лимфоциты при их вовлечении в воспалительный процесс. TNFa выявляют в кровотоке раньше других провоспалительных цитокинов - уже через 20-30 мин после индукции воспаления, что связано со «сбрасыванием» клетками мембранной формы молекулы, а возможно также с выбросом TNFa в составе содержимого гранул.
Есть 2 типа рецепторов TNF, общие для TNFa и лимфотоксина a - TNFRI (от tumor necrosis factor receptor I) и TNFRII с молекулярной массой соответственно 55 и 75 кДа. TNFRI присутствует практически на всех клетках организма, кроме эритроцитов, а TNFRII - преимущественно на клетках иммунной системы. TNFR образуют большое семейство, в которое входят молекулы, участвующие во взаимодействии клеток и индукции клеточной гибели - апоптоза. Сродство TNFa к TNFRI ниже, чем к TNFRII (соответственно около 5х10-10 М и 55х10-11 М. При связывании TNFa-тримера происходит необходимая для передачи сигнала тримеризация его рецепторов.
Особенности передачи сигнала от этих рецепторов во многом определяются структурой их внутриклеточной части. Цитоплазматическая часть TNFRI представлена так называемым доменом смерти, от которого поступают сигналы, приводящие к включению механизма апоптоза; TNFRII лишен домена смерти. Передача сигнала от TNFRI происходит с участием адапторных белков TRADD (TNFR-associated death domain) и FADD (Fas- associated death domain), тоже содержащих домены смерти. Помимо пути, приводящего к развитию апоптоза (через активацию каспазы 8 или синтез церамида), выделяют еще несколько сигнальных путей, включаемых с участием факторов TRAF2/5 и RIP-1. Первый из названных факторов передает сигнал по пути, приводящему к активации фактора NF-kB, т.е. по классическому пути индукции провоспалительных генов (см. рис. 2.55). Сигнальный путь, активируемый фактором RIP-1, приводит к активации MAP-каскада с конечным продуктом - транскрипционным фактором АР-1. Этот фактор включает гены, обеспечивающие активацию клетки и предотвращающие развитие апоптоза. Судьбу клетки, таким образом, определяет баланс про- и антиапоптотических механизмов, запускаемых при связывании TNFa с TNFRI.
Реализация функций TNFa связана преимущественно с действием через TNFRI - выключение соответствующего гена приводит к развитию тяжелого иммунодефицита, тогда как последствия инактивации гена TNFRII незначительны. На пике воспалительной реакции рецепторы ФНОa могут «сбрасываться» с мембраны и выходить в межклеточное пространство, где они связывают ФНОa, оказывая противовоспалительное действие. В связи с этим растворимые формы TNFR используют при лечении хронических воспалительных заболеваний. При этом оказалось, что препарат на основе растворимого TNFRII оказался клинически наиболее эффективным.
Как и IL-1, TNFa усиливает экспрессию молекул адгезии, синтез провоспалительных цитокинов и хемокинов, белков острой фазы, ферментов фагоцитарных клеток и т.д. Наряду с IL-1, TNFa участвует в формировании всех основных местных, а также некоторых системных проявлений воспаления. Он активирует эндотелиальные клетки, стимулирует ангиогенез, усиливает миграцию и активирует лейкоциты. TNFa в большей степени, чем IL-1, влияет на активацию и пролиферацию лимфоцитов. В комбинации с IFNy TNFa индуцирует активность NO-синтазы фагоцитов, что значительно усиливает их бактерицидный потенциал. TNFa стимулирует пролиферацию фибробластов, способствуя заживлению ран. При повышенной локальной выработке TNFa преобладают процессы повреждения тканей, проявляющиеся развитием геморрагического некроза. Помимо этого TNFa подавляет активность липопротеиновой липазы, что ослабляет липогенез и приводит к развитию кахексии (одно из первоначальных названий TNFa - кахексин). Повышенное высвобождение TNFa и его накопление в циркуляции, например при действии высоких доз бактериальных суперантигенов, вызывает развитие тяжелой патологии - септического шока. Таким образом, действие TNFa, направленное на выполнение защитной функции и поддержание гомеостаза, может сопровождаться тяжелыми токсическими эффектами (местными и системными), нередко служащими причиной смерти.
IL-6 - провоспалительный цитокин широкого действия. Он также служит прототипическим фактором семейства цитокинов, включающего, кроме собственно IL-6, онкостатин М (OSM), лейкемия-ингибирующий фактор (LIF), цилиарный нейротрофический фактор (CNTF), кардиотро- пин-1 (CT-1), а также IL-11 и IL-31. Молекулярная масса IL-6 - 21 кДа. IL-6 вырабатывают моноциты и макрофаги, эндотелиальные, эпителиальные, глиальные, гладкомышечные клетки, фибробласты, Т-лимфоциты типа Th2, а также многие опухолевые клетки. Выработка IL-6 миелоидными клетками индуцируется при взаимодействии их TLR с микроорганизмами и их продуктами, а также под влиянием IL-1 и TNFa. При этом в течение 2 ч содержание IL-6 в плазме крови возрастает в 1000 раз.
Рецепторы всех факторов семейства IL-6 содержат общий компонент - цепь gp130, присутствующую практически на всех клетках организма. Второй компонент рецептора индивидуален для каждого цитокина. Специфическая цепь рецептора IL-6 (gp80) отвечает за связывание этого цитокина, тогда как gp130 участвует в передаче сигнала, поскольку связана с тирозинкиназами Jak1 и Jak2. При взаимодействии IL-6 с рецептором запускается следующая последовательность событий: IL-6-мономер взаимодействует с цепью gp80, происходит димеризация комплексов (2 молекулы цитокина - 2 цепи gp80), после чего к комплексу присоединяется 2 цепи gр130, что приводит к фосфорилированию Jak-киназ. Последние фосфорилируют факторы STAT1 и STAT3, которые димеризуются, перемещаются в ядро и связывают промоторы генов-мишеней. Цепь gp80 легко «смывается» с клетки; в свободной форме она взаимодействует с цитокином, инактивируя его, т.е. выступает в качестве специфического ингибитора IL-6.
IL-6 участвует в индукции практически всего комплекса местных проявлений воспаления. Он влияет на миграцию фагоцитов, усиливая выработку СС-хемокинов, привлекающих моноциты и лимфоциты, и ослабляя продукцию СХС-хемокинов, привлекающих нейтрофилы. Провоспалительные эффекты IL-6 выражены слабее, чем у IL-1 и TNFa, в противоположность которым он не усиливает, а угнетает выработку провоспалительных цитокинов (IL-1, TNFa и IL-6) и хемокинов клетками, вовлеченными в воспалительный процесс. Таким образом, IL-6 сочетает свойства про- и противовоспалительных цитокинов и участвует не только в развитии, но и в ограничении воспалительной реакции.
IL-6 - основной фактор, индуцирующий в гепатоцитах экспрессию генов белков острой фазы. IL-6 влияет на различные этапы гемопоэза, в том числе на пролиферацию и дифференцировку стволовых клеток. Он служит ростовым фактором незрелых плазматических клеток, существенно усиливая гуморальный иммунный ответ. IL-6 влияет также на Т-лимфоциты, повышая активность цитотоксических Т-клеток.
IL-17 и связанные с ним цитокины. Группа цитокинов, включающая разновидности IL-17, привлекла всеобщее внимание в связи с открытием особой разновидности Т-хелперов - Th17, участвующей в развитии некоторых повреждающих форм воспалительных реакций, в частности, при аутоиммунных процессах (см. раздел 3.4.3.2). Роль этих цитокинов в реакциях адаптивного иммунного ответа будет рассмотрена далее. Здесь приведем только общую характеристику цитокинов и кратко рассмотрим их роль в реакциях врожденного иммунитета.
Семейство IL-17 включает 6 белков, обозначаемых буквами от А до F. Свойствами провоспалительных цитокинов из них обладают IL-17A и IL-17F. Они представляют собой гомодимеры, скрепленные дисульфидной связью; их молекулярная масса - 17,5 кДа. Эти цитокины продуцируются упомянутыми Th17, а также CD8+ Т-клетками, эозинофилами, нейтрофилами. IL-23 стимулирует развитие ТЫ7-клеток и выработку IL-17.
Рецепторы для IL-17 экспрессируются многоми клетками - эпителиальными, фибробластами, клетками иммунной системы, в частности, нейтрофилами. Основной результат взаимодействия IL-17 с рецептором состоит, как и при действии других провоспалительных цитокинов, в индукции фактора NF-kB и экспрессии многочисленных NF-KB-зависи- мых генов воспаления.
Один из важных биологических эффектов IL-17 (наряду с IL-23) - поддержание гомеостаза нейтрофилов. Эти цитокины усиливают образование нейтрофилов, стимулируя выработку G-CSF. При этом усиление или ослабление выработки IL-17 и IL-23 регулируется численностью нейтрофилов в периферических тканях: снижение числа этих клеток в результате апоптоза приводит к усилению выработки цитокинов.
Провоспалительное действие IL-17 реализуется главным образом через усиление выработки других цитокинов (IL-8, IL-6, y-CSF, ряд хемокинов) и экспрессии молекул адгезии. У мышей, трансгенных по IL-17 или по IL-23, развивается системное хроническое воспаление, имеющее интерстициальный характер, с инфильтрацией нейтрофилами, эозинофилами, макрофагами и лимфоцитами различных органов. За этими цитокинами признают ведущую роль в развитии хронических аутоиммунных заболеваний.
Семейство IL-12
IL-12 был идентифицирован по способности активировать NK-клетки, вызывать пролиферацию Т-лимфоцитов и индуцировать синтез IFNy. IL-12 занимает особое место в ряду цитокинов, вырабатываемых клетками системы врожденного иммунитета, поскольку он (как и его главные продуценты - дендритные клетки) служит связующим звеном между врожденным и адаптивным иммунитетом. С другой стороны, IL-12 входит в тандем IL-12-IFNy, которому принадлежит ключевая роль в осуществлении иммунной защиты от внутриклеточных патогенов.
IL-12 представляет димер, состоящий из субъединиц р40 и р35. Его суммарная молекулярная масса - 75 кДа. Функциональная активность IL-12 связана с его субъединицей р40. «Полномасштабный» IL-12 секретируют активированные моноциты, макрофаги, миелоидные дендритные клетки, нейтрофилы, эпителиальные клетки барьерных тканей (они продуцируют и ^-12р35 и IL-12p40 субъединицы цитокина). Большинство же клеток организма синтезирует только функционально неактивную субъединицу ^-12р35. Количество гетеродимера IL-12, секретируемого клеткой, ограничено субъединицей р35. IL-12p40 синтезируется в избытке и может димеризоваться с образованием гомодимера, выступающего в качестве антагониста IL-12, а также хемоаттрактанта. Индукторы выработки IL-12 - прежде всего патогены, распознаваемые TLR и другими паттернраспознающими рецепторами. Выработку IL-12 усиливают IL-1, IFNy, а также межклеточные взаимодействия, опосредованные CD40-CD154 и другими парами молекул семейств - TNFR.
Рецептор IL-12 сильнее всего экспрессирован на NK-клетках, активированных ТЫ-клетках и цитотоксических Т-лимфоцитах и в меньшей степени - на дендритных клетках. Экспрессия рецептора IL-12 активированными Т-клетками усиливается под влиянием IL-12, IFNy, IFNa, TNFa и при кос- тимуляции через рецептор CD28. Рецептор для IL-12 представляет димер, образованный субъединицами IL-12RP1 (100 кДа), и IL-12RP2 (130 кДа, CD212), с которым ассоциирован белок с молекулярной массой 85 кДа. В связывании IL-12 участвуют и Pj и р2 цепи, тогда как в передаче сигнала задействована преимущественно субъединица IL-12RP2. Внутриклеточный домен Pj-цепи ассоциирован с киназой JAK2, внутриклеточный домен Р2-цепи - с киназой Tyk2. Киназы фосфорилируют транскрипционные факторы STAT1, STAT3, STAT4 и STAT5.
Главная функция IL-12, обусловленная его способностью стимулировать цитотоксические лимфоциты (NK и T) и индуцировать дифферен- цировку Thl-клеток (см. раздел 3.4.3.1), - запуск клеточных механизмов защиты от внутриклеточных патогенов. IL-12 действует на NK- и NKT-клетки уже на ранних стадиях иммунных процессов, усиливая пролиферацию и цитотоксическую активность NK-клеток, а позже - цитотоксических Т-лимфоцитов и синтез всеми этими клетками IFNy. Несколько позже IL-12 индуцирует дифференцировку Thl-клеток, тоже продуцирующих IFNy. Условие индукции Thl-клеток - предварительная экспрессия активированными CD4+ Т-клетками субъединицы рецептора IL-12RP2. После этого клетки приобретают способность связывать IL-12, что приводит к активации фактора STAT4, регулирующего экспрессию генов, характерных для Thl-клеток (для экспрессии гена IFNG более важно действие транскрипицонного фактора T-bet). Одновременно IL-12 подавляет дифференцировку ^2-клеток и ослабляет выработку клетками
В-ряда антител классов IgE и IgA. Действуя на дендритные и другие АПК IL-12 индуцирует экспрессию костимулирующих молекул (CD80/86, и др.), а также продуктов МНС-II АПК. Таким образом, IL-12 играет связующую роль между врожденным и адаптивным иммунитетом и усиливает иммунные механизмы, ответственные за защиту от внутриклеточных патогенов и опухолей.
К семейству IL-12 относят IL-23, IL-27 и IL-35. Эти цитокины представляют гетеродимеры: IL-23 образован двумя субъединицами - ^-23р19 и IL-12p40 (идентична соответствующей субъединице IL-12), IL-27 - субъединицами Ebi3 и IL-27p28, IL-35 - субъединицами Ebi3 и IL-12p35. Эти цитокины продуцируются преимущественно дендритными клетками. Выработку цитокинов семейства IL-12 запускают представленные на патогенах PAMP и цитокины, в особенности GM-CSF.
Рецепция IL-23 осуществляется двумя разными структурами: субъединицу IL-12p40 распознает ргцепь рецептора для IL-12, а субъединицу ^-23р19 - особый рецептор - IL-23R. Основную роль в передаче сигнала от IL-23 играет STAT4. Рецептор для IL-27 активирует молекулы WSX-1 (гомолог р2-субъединицы IL-12R) и gp130 (полипептидная цепь, входящая в состав рецепторов для цитокинов семейства IL-6).
Подобно IL-12, IL-23 и IL-27 действуют преимущественно на CD4+ Т-клетки, способствуя их дифференцировке по Th1-пути. Особенности IL-23 - преимущественное действие на Т-клетки памяти, а также способность поддерживать развитие Т-хелперов типа Th17. IL-27 отличается от двух других цитокинов семейства способностью вызывать пролиферацию не только активированных, но и покоящихся CD4+ Т-клеток. Недавно было показано, что IL-27 и IL-35 могут выступать в качестве регуляторных (супрессорных) факторов, поскольку их субъединица Ebi3 - мишень ключевого фактора регуляторных Т-клеток FOXP3.
Колониестимулирующие факторы (CSF) (табл. 2.32) или гемопоэтины представлены тремя цитокинами - GM-CSF, G-CSF и M-CSF. К ним функционально близок IL-3 (Multi-CSF). Эти факторы называют колониестимулирующими, поскольку впервые были идентифицированы по способности поддерживать рост in vitro колоний гемопоэтических клеток соответствующего состава. IL-3 обладает наиболее широким спектром действия, поскольку поддерживает рост любых колоний гемопоэтических клеток, кроме лимфоидных. GM-CSF поддерживает рост как смешанных гранулоцитарно-моноцитарных колоний, так и отдельно колоний грану- лоцитов и моноцитов/макрофагов. G-CSF и M-CSF специализируются на поддержании роста и дифференцировки соответствующих колоний. Эти факторы не только обеспечивают выживаемость и пролиферацию кроветворных клеток указанных типов, но и способны активировать уже зрелые дифференцированные клетки (M-CSF - макрофаги, G-CSF - нейтрофилы). M-CSF участвует в дифференцировке моноцитов в макрофаги и подавляет дифференцировку моноцитов в дендритные клетки. G-CSF, помимо действия на гранулоцитарный ветвь гемопоэза, вызывает мобилизацию кроветворных стволовых клеток из костного мозга в кровоток.
Таблица 2.32. Характеристика колониестимулирующих факторов

Назва
ние

Хромо
сома

Молекулярная масса, кДа

Клетки-
продуценты

Клетки-
мишени

Рецеп
торы

GM-CSF

5q

22

Макрофаги, Т-клетки, NK-клетки, стромальные клетки, эпителиальные клетки

Макрофаги, нейтрофилы, эозинофилы, Т-клетки, дендритные клетки, гемопоэтические клетки

GM-
CSFR
а/Р

G-CSF

17q

18-22


Нейтрофилы, эозинофилы, Т-клетки, гемопоэтические клетки

G-CSFR (1 цепь)

M-CSF

5q

45/70 (димер)

Макрофаги, стромальные клетки, эпителиальные клетки

Макрофаги,
гемопоэтические
клетки

c-Fms

Фактор стволовых клеток

12q

32

Стромальные
клетки

Гемопоэтические клетки, В-клетки, тучные клетки

c-Kit

Flt-3-
лиганд

19q

26,4

Стромальные
клетки

Гемопоэтические клетки, тучные клетки

Flt-3

G-CSF, GM-CSF и IL-3 структурно характеризуются как гемопоэтины, содержащие 4 а-спиральных домена. Их рецепторы содержат по 2 полипептидные цепи, их относят к семейству гемопоэтиновых рецепторов. M-CSF отличается от остальных CSF. Он представляет собой димерную молекулу и существует как в растворимой, так и в мембраносвязанной формах. Его рецептор имеет внеклеточные Ig-подобные домены и внутриклеточный домен, обладающий активностью тирозинкиназы (наименование этой киназы-протоонкогена - с-Fms - иногда переносят на весь рецептор). При связывании М-CSF с рецепторами происходит их димеризация и активация киназы.
Колониестимулирующие факторы продуцируются эндотелиальными клетками и фибробластами а также моноцитами/макрофагами. GM-CSF и IL-3, кроме того, синтезируются Т-лимфоцитами. Под влиянием бактериальных продуктов (через паттернраспознающие рецеторы) и провоспалительных цитокинов синтез и секреция колониестимулирующих факторов значительно возрастает, что приводит к усилению миелопоэза. Особенно сильно стимулируется гранулоцитопоэз, что сопровождается ускоренной эмиграцией клеток, в том числе незрелых, на периферию. Это создает картину нейтрофильного лейкоцитоза со сдвигом формулы вправо, весьма характерным для воспаления. Препараты на основе GM- и G-CSF применяют в клинической практике для стимуляции гранулоцитопоэза, ослабленного цитотоксическими воздействиями (облучение, прием химиопрепаратов при лечении опухолевых заболеваний и т.д.). G-CSF применяют для мобилизации стволовых кроветворных клеток с последующим использованием индуцированной лейкомассы для восстановления нарушенного гемопоэза.
Фактор стволовых клеток (SCF - stem cell factor, c-kit ligand) cекретируют клетки стромы костного мозга (фибробласты, эндотелиальные клетки), а также разные типы клеток в период эмбрионального развития. SCF существует в виде трансмембранной и растворимой молекул (последняя образуется в результате протеолитического отщепления внеклеточной части). SCF выявляют в плазме крови. Его молекула имеет две дисульфидные связи. Рецептор SCF - с-Кк - обладает тирозинкиназной активностью и по своей структуре близок к Flt-3 и c-Fms (рецептор M-CSF). При связывании SCF происходят димеризация рецепторов и их фосфорилирование. Передача сигнала происходит с участием PI3K и MAP-каскада.
Мутации гена SCF и его рецептора описаны давно (мутации steel); у мышей они проявляются изменением окраски шерсти и нарушением гемопоэза. Мутации, нарушающие синтез мембранной формы фактора, вызывают грубые дефекты развития эмбриона. Совместно с другими факторами SCF участвует в поддержании жизнеспособности стволовых кроветворных клеток, обеспечивает их пролиферацию, поддерживает ранние этапы гемопоэза. SCF особенно важен для эритропоэза и развития тучных клеток, а также служит ростовым фактором для тимоцитов на стадиях DN1 и DN2.
По структуре и биологической активности сходными с SCF свойствами обладает фактор Flt-3L- (Fms-like thyrosinkinase 3-ligand), в сочетании с другими факторами поддерживающий ранние этапы миелопоэза и развитие В-лифмоцитов. SCF играет роль фактора роста лейкозных миелобластов.
Хемокины, представляющие важный гуморальный фактор воспаления и врожденного иммунитета, рассмотрены выше при описании хемотаксиса лейкоцитов (см. раздел 2.3.2).

д.м.н., проф. Царегородцева Т.М., зав. лабораторией иммунологии

ЦНИИ гастроэнтерологии Департамента здравоохранения г. Москвы

Цитокинам (ЦК) принадлежит важная роль в развитии и течении заболеваний разных органов и систем, в том числе органов пищеварения. ЦК — низкомолекулярные белки, эндогенные биологически активные медиаторы, обеспечивающие передачу сигнала, обмен информацией между разными видами клеток внутри одного органа, связь между органами и системами, как в физиологических условиях, так и при действии различных патогенных факторов. У здоровых лиц ЦК продуцируются в минимальных количествах, достаточных для проявления биологического эффекта, при патологических состояниях их содержание многократно возрастает.

ЦК синтезируют активированные клетки, преимущественно лимфоциты, моноциты, тканевые макрофаги. Разные клетки, например макрофаги, лимфоциты, эндотелиоциты, могут синтезировать одни и те же ЦК. С другой стороны, одни и те же клетки могут вырабатывать разные ЦК.

Синтез ЦК запрограммирован генетически, кратковременен, регулируется ингибиторами. Повышенное содержание ЦК может быть обусловлено не только увеличением их синтеза, но и нарушением катаболизма, своевременного выведения из организма при поражениях печени, почек.

Увеличенный синтез ЦК приводит к активации множества самых разных типов клеток. Таким образом, реализуется широкое взаимодействие на субклеточном, клеточном, органном, системном уровнях, формирование комплексной защитной реакции, направленной на нейтрализацию повреждающих агентов, их разрушение, элиминацию из организма, сохранение его гомеостаза, структурной и функциональной целостности.

Классификация цитокинов

В настоящее время идентифицировано более 100 ЦК, и их число продолжает пополняться. Среди ЦК выделяют следующие основные группы: интерлейкины (ИЛ), интерфероны (ИФ), факторы некроза опухоли (ФНО), факторы роста, хемокины и др.

Механизмы действия

ЦК реализуют свой биологический эффект посредством связи с рецепторами, локализующимися на мембранах клеток-мишеней — иммунокомпетентных, эндотелиальных, эпителиальных, гладкомышечных и других специализированных клеток. Вне клетки ЦК могут связываться с циркулирующими рецепторами, которые транспортируют их в очаг поражения и выводят из сосудистого русла. Синтез рецепторов протекает более интенсивно и длительно, чем синтез ЦК, что способствует более полной реализации их биологического эффекта и удалению из организма.

Функциональные свойства

ЦК обладают широким спектром биологических свойств: индуцируют и регулируют такие физиологические и патологические процессы как рост, пролиферацию, дифференцировку клеток, метаболизм, воспаление, иммунный ответ. ЦК многофункциональны, универсальны, плейотропны. Одни и те же ЦК могут взаимодействовать с рецепторами разных клеток, при этом ЦК со сходным строением могут оказывать различное биологическое действие, а разные в структурном отношении ЦК — вызывать одинаковый эффект.

В организме ЦК тесно взаимодействуют между собой, образуя универсальную сеть, запускающую и регулирующую каскад воспалительных, иммунных, метаболических процессов, как локальных, так и системных, направленных на нейтрализацию и элиминацию патогенных агентов. Эта коммуникационная биологическая система обладает значительным запасом прочности за счет дублирования большинства функций разными ЦК, их взаимозаменяемости, сочетания аутокринной и паракринной регуляции. Тем не менее, при всем многообразии функций у конкретных ЦК преобладают определенные свойства, выработанные в процессе эволюции.

Цитокины и воспаление

Провоспалительные ЦК (ИЛ-1β, ИЛ-6, ИЛ-8, ИЛ-12, ИФН-γ, ФНО-α) характеризуются широким диапазоном биологического действия на многочисленные клетки-мишени. ИЛ-1β при действии патогенных факторов одним из первых включается в ответную реакцию организма, активируя Т- и В-лимфоциты, инициируя синтез ИЛ-6, ФНО-α, ПГ, оказывая пирогенный эффект. ИЛ-6 продуцируется в основном лимфоцитами, однако в его синтезе могут принимать участие гепатоциты, клетки Купфера, эндотелия, эпителиальные клетки желчных протоков, фибробласты. ИЛ-6 оказывает не только про-, но и противовоспалительный эффект, завершает острую фазу воспаления, активирует В-лимфоциты, регулирует пролиферацию клеток печени, желчных протоков, формирование фиброза, образование гранулем. ИЛ-8 — хемокин — стимулирует и регулирует адгезию, хемотаксис лейкоцитов в очаг поражения. ФНО-α — ключевой многофункциональный ЦК системного действия, играет доминирующую роль в развитии местных и общих патологических процессов, стимулирует синтез провоспалительных ИЛ, пролиферацию клеток эндотелия, регулирует тонус кровеносных сосудов. ФНО-α усиливает окислительный стресс, оказывает мощный цитотоксический эффект, индуцирует некроз опухолевых, инфицированных и других пораженных клеток. Стимулируя цитотоксическую, фагоцитарную активность, утилизацию дефектных клеток, нейтрализуя бактериальные токсины, ФНО-α принимает участие в формировании защитных реакций организма. Однако интенсивный продолжительный синтез данного ЦК способствует расстройству гемодинамики, развитию гипертермии, кахексии, некроза, токсического септического шока, полиорганной недостаточности. ИЛ-12, стимулирует синтез ИФН-γ — универсального иммуномодулятора, повышающего адгезивную, цитотоксическую, фагоцитарную активность клеток, оказывающего антипролиферативный, противовирусный эффект.

Противовоспалительные цитокины — ИЛ-4, -10, -13, -17 — ингибируют воспаление, угнетают синтез провоспалительных ЦК, образование высокоактивных метаболитов кислорода, азота. ИЛ-4 стимулирует пролиферацию и дифференцировку В-лимфоцитов в плазматические клетки, синтез иммуноглобулинов, антител, гуморальный иммунный ответ. Такова краткая характеристика основных биологических функций ключевых ЦК, регулирующих как местные, так и системные воспалительные процессы. Воспаление — универсальная реакция, развивающаяся в организме в ответ на действие различных повреждающих факторов. Большинство болезней органов пищеварения — гастрит, панкреатит, гепатит, холецистит и другие — обусловлены в значительной степени развитием воспаления. ЦК регулируют интенсивность, распространенность и продолжительность воспаления. С одной стороны, провоспалительные ЦК усиливают явления альтерации, деструкции, стимулируют синтез острофазных белков, окислительный стресс. С другой — раннее развитие адекватных воспалительных процессов способствует ограничению очага поражения, повышению барьерных функций, регенерации, заживлению тканевого дефекта, предотвращению системных осложнений.

Цитокины и иммунный ответ

ЦК принимают непосредственное участие в формировании как неспецифической защиты, так и специфического иммунного ответа, образующих в комплексе единую интегративную клеточно-гуморальную систему защиты организма при действии патогенных агентов. В тех случаях, когда повреждающий фактор является носителем генетически чужеродной информации, воспалительные процессы включают иммунные механизмы. Основные клетки, реализующие иммунный ответ, — макрофаги, Т- и В-лимфоциты, плазмоциты. Однако и многие тканевые клетки (эндотелия, эпителия, гладкой мускулатуры, печени и др.) принимают участие в иммунном ответе, взаимодействуя с иммунокомпетентными клетками. Ведущая роль в развитии и регуляции иммунного ответа принадлежит Т-лимфоцитам, популяция которых включает Т-хелперы, Т-супрессоры, цитотоксические Т-лимфоциты. Т-хелперы (Тх) продуцируют ЦК с различными функциональными свойствами. Тх 1 типа синтезируют ИФН-γ, ИЛ- 2, ФНО-α; Тх 11 типа — ИЛ-4, -5, -6, -10, -13, индуцирующие соответственно клеточный и гуморальный иммунный ответ. В собственной пластинке и пейеровых бляшках ЖКТ локализуются преимущественно Тх 11 типа, стимулирующие гуморальный иммунный ответ, направленный против многочисленных бактериальных антигенов, воздействующих на слизистую оболочку ЖКТ, и реализуемый в основном IgА.

Цитокины играют ведущую роль в регуляции основных этапов иммунного ответа. В зависимости от характера патогенного агента, интенсивности, продолжительности антигенной стимуляции, исходного состояния иммунной системы организма ЦК могут действовать как антагонисты, так и синергисты, дополняя друг друга. При заболеваниях органов пищеварения (ЗОП) формируется интегрированный ответ иммунной системы, опосредованный клеточными и гуморальными факторами, конечной целью которого является инактивация и удаление из организма патогенных агентов. В физиологических условиях функционирование иммунной системы определяется сбалансированной продукцией регуляторных цитокинов Т -хелперами 1 и 11 типов. Нарушение цитокинового баланса играет значительную роль в хронизации, прогрессировании ЗОП.

Для определения количественного содержания ЦК в настоящее время широко применяется высокоинформативный метод иммуноферментного анализа с использованием высокочувствительных тест-систем, в т.ч. и отечественного производства.

Результаты многолетних исследований, проводимых в ЦНИИ гастроэнтерологии, позволили выявить особенности изменения цитокинового статуса при ЗОП в зависимости от этиологического фактора, вариантов течения, стадии, продолжительности заболевания, проводимой терапии.

Для таких хронических рецидивирующих заболеваний органов пищеварения (ХРЗОП), как язвенная, желчно-каменная болезнь, панкреатит характерно многократное, относительно кратковременное увеличение в периферической крови содержания широкого спектра ЦК, отражающее временную последовательность их синтеза, динамику патологического процесса. На ранних сроках и пике обострения ХРЗОП, в фазу альтеративно-деструктивных процессов преобладает повышение уровня ИЛ-1β, -6, -8, -12, ИФ-γ,ФНО-α (в среднем — 240–780, достигая у отдельных больных с выраженной активностью — 1100–3200 пг/мл, в контроле — до 40 пг/мл). При усилении регенераторно-восстановительных процессов содержание провоспалительных ЦК существенно снижается, а противовоспалительных (ИЛ-4, -10) — возрастает. При переходе в ремиссию у большинства больных концентрация ЦК приближается к нормальным значениям. Следовательно, в динамике патологического процесса при ХРЗОП содержание ЦК с различными функциональными свойствами, их соотношение претерпевает существенные изменения.

Для таких хронических прогрессирующих заболеваний (ХПЗОП), как хронический гепатит, цирроз печени, болезнь Крона, неспецифический язвенный колит характерно умеренное (в среднем — 160–390 пг/мл), стойкое, относительно монотонное увеличение содержания ключевых про- и противовоспалительных ЦК, которое возрастает при действии неблагоприятных факторов, развитии осложнений, сопутствующих заболеваний. По мере увеличения продолжительности заболевания, частоты рецидивов синтез ЦК снижается в результате угнетения функциональной активности иммунной системы, истощения ее ресурсов, развития вторичного иммунодефицита, обусловленного прогрессированием самого заболевания, а также ингибирующим эффектом медикаментозной терапии.

Цитокины регулируют интенсивность местных и системных патологических процессов. Заболевания желудка, поджелудочной железы, желчного пузыря, печени, тонкой и толстой кишки сопровождаются изменением содержания ЦК в поврежденной ткани и прилегающей зоне, характеризующим интенсивность местного иммунного ответа. Выраженное увеличение концентрации ЦК в периферической крови является отражением системной реакции организма, в частности иммунной, гемопоэтической систем, на локальные повреждения органов и может служить одним из показателей интенсивности воспалительного, иммунного процессов, активности, прогрессирования заболевания.

Этиологический фактор оказывает существенное влияние на уровень циркулирующих ЦК при ЗОП. Так, повышение содержания ЦК при хронических инфекционных, воспалительных, аутоиммунных заболеваниях более выражено, нежели при злокачественных новообразованиях, нарушениях обмена, наследственных поражениях.

Увеличение синтеза ЦК — вторичный феномен, ответ организма на действие патогенных факторов. Повышение концентрации ИЛ-1β, -2, -6, -8, -12, ИФ-γ, ФНО-α на ранних сроках и в разгар заболевания отражает увеличение адгезивной, хемотоксической, цитотоксической активности, синтеза биологически активных веществ, белков острой фазы, свободных радикалов. Эти процессы обусловливают нарушение микроциркуляции, развитие гиперемии, отека, некробиоза. В более поздние периоды под влиянием ЦК (ИФ-γ, ФНО-α, ИЛ-6, -4, -10) поврежденные клетки фагоцитируются, деструктивный материал утилизируется, нарастают процессы регенерации, ангиогенеза, восстановление эпителиального слоя, рост фиброзной ткани. Посредством перечисленных механизмов ЦК принимают участие в патогенезе ЗОП, инициируя и регулируя экссудативно-альтеративные и компенсаторно-восстановительные процессы в тканях ЖКТ, реализуя взаимодействие между иммунокомпетентными и различными специализированными клетками. В зависимости от конкретных условий, ЦК могут выполнять роль как факторов агрессии, так и защиты. Защитный эффект ЦК связан с активацией врожденного и приобретенного иммунитета, путем стимуляции неспецифической, естественной резистентности и специфического иммунного ответа.

Биологический эффект ЦК при действии различных патогенных факторов (инфекционных, токсических, механических, термических) определяется интенсивностью, продолжительностью антигенной стимуляции и характеризуется отсутствием специфичности. Увеличение синтеза ЦК — универсальный, неспецифический ответ организма на действие патогенных агентов. Продолжительный, интенсивный синтез ЦК, их чрезмерный выброс может стать фактором прогрессирования патологического процесса, оказывая прямое повреждающее действие на клетки и ткани.

Роль цитокинов в диагностике заболеваний органов пищеварения

Изменения цитокинового статуса при ЗОП разной этиологии различаются количественными параметрами, каких-либо существенных качественных, специфических особенностей при этом выявить не удается. В связи с этим не представляется возможным говорить о непосредственной диагностической ценности определения цитокинового статуса, что не исключает его опосредованного значения. Например, увеличение концентрации провоспалительных ЦК в желчи свидетельствует о наличии воспалительного процесса в желчном пузыре. Однако определение цитокинового статуса при ЗОП имеет важное прогностическое значение, поскольку уровень про- и противовоспалительных ЦК, их соотношение отражает интенсивность альтеративно-деструктивных и регенераторно-восстановительных процессов, их динамику, прогрессирование заболевания.

Базисная терапия, проводимая пациентам с обострениями хронических ЗОП, сопровождается у большинства больных достоверным снижением увеличенных концентраций сывороточных ЦК по сравнению с уровнем, предшествующим лечению. Эти данные отражают положительную динамику показателей клинико-лабораторной активности заболевания, иммунного статуса, эффективность применяемой терапии. Продолжающееся повышение содержания провоспалительных ЦК (прежде всего ФНО-α) на фоне проводимой терапии свидетельствует об отсутствии выраженных позитивных изменений, прогрессировании патологического процесса.

Цитокинотерапия

Достижения современной молекулярной биологии, биотехнологии, иммунологии, генетики в изучении структурной организации, функциональных свойств ЦК служат основанием для их использования с терапевтической целью при заболеваниях разных органов и систем.

ЦК могут применяться в качестве как заместительной, стимулирующей, так и ингибирующей функциональную активность иммунной системы терапии. Терапевтическое действие ряда ЦК обусловлено их способностью усиливать общую реактивность организма, неспецифическую защиту и специфический иммунитет, оказывать антивирусный, антибактериальный, антитоксический эффект. Показанием для проведения заместительной, компенсаторной терапии ЦК служит снижение их содержания, вторичные иммунодефицитные состояния, которые нередко встречаются при хронических прогрессирующих инфекционных, воспалительных, аутоиммунных заболеваниях.

Позитивные результаты отмечены при использовании рекомбинантных препаратов интерферонов, интерлейкинов, активирующих местный и системный иммунитет. В настоящее время обширный фактический материал получен в отношении терапевтического эффекта рекомбинантных препаратов интерферона-α (роферона А, реаферона, интрона А), используемых в качестве универсального неспецифического противовирусного средства, в частности при вирусных гепатитах. В ЦНИИ гастроэнтерологии применение у больных хроническим вирусным гепатитом С комбинированной противовирусной терапии, включающей рекомбинантные препараты интерферона-α 2 отечественного производства, сопровождалось позитивной динамикой показателей клинической, гистологической, биохимической, вирусологической активности, иммунного статуса.

Мощным активатором естественной резистентности являются препараты ИНФ-α, индукторы его синтеза (циклоферон, амиксин), стимулирующие неспецифическую защиту, цитотоксическую, фагоцитарную активность, способствуя тем самым разрушению и удалению из организма инфицированных, опухолевых и других дефектных клеток.

В случаях стойкого увеличения синтеза ЦК при хронических прогрессирующих заболеваниях применяются ингибиторы, антагонисты ЦК. К ним, в частности, относятся препараты, содержащие моноклональные антитела к ФНОα (инфликсимаб). Внутривенное введение инфликсимаба больным неспецифическим язвенным колитом, болезнью Крона, находившимся на стационарном лечении в ЦНИИ гастроэнтерологии, сопровождалось выраженным изменением цитокинового статуса: снижением в периферической крови содержания не только ФНО-α (с 110 до 55 пг/мл), но и ИЛ-6 (с 60 до 30 пг/мл), с одновременным увеличением концентрации ИЛ-12 (с 90 до 210 пг/мл), без существенного изменения уровня ИЛ-4.

Таким образом, применение ЦК, их индукторов, ингибиторов сопровождается улучшением показателей клинико-лабораторной активности, снижением интенсивности воспалительных, иммунопатологических реакций при хронических ЗОП, однако позитивный эффект носит временный характер.

Заключение

Изменения цитокинового статуса при ЗОП выражены в различной степени в зависимости от этиологического фактора, вариантов течения, продолжительности, стадии, активности заболевания, проводимой терапии. Максимальное, относительно кратковременное увеличение содержания в периферической крови широкого спектра ЦК, отражающее динамику патологического процесса, характерно для обострений хронических рецидивирующих ЗОП. Продолжительное, монотонное, умеренно выраженное повышение концентрации ключевых про- и противовоспалительных ЦК отмечено при прогрессирующих ЗОП. Базисная терапия при ЗОП сопровождается снижением увеличенного содержания ЦК с одновременной позитивной динамикой клинико-лабораторных показателей активности заболевания.

Определение цитокинового статуса имеет важное прогностическое значение, поскольку позволяет судить об интенсивности воспалительных, инфекционных, иммунопатологических процессов, их динамике, прогрессировании ЗОП, а также эффективности проводимой терапии.

Литература

1. Ляшенко А.А., Уваров В.Ю. К вопросу о систематизации цитокинов// Успехи современной биологии.- 2001.- 121.- № 6.- С. 589–603.

2. Черешнев В.А., Гусев Е.И. Иммунология воспаления: роль цитокинов// Мед. иммунология.- 2001.- т. 3.- № 3.- С. 361–368.

3. Ройт А., Бростофф Дж., Мейл Д. Иммунология.- М.: Мир, 2000.- С. 169–175.

4. Адлер Гвидо. Болезнь Крона и язвенный колит.- М.: Медицина, 2001.- 64 с.

5. Андерсен Л., Норгард А., Беннедсен М. Клеточный иммунный ответ на инфекцию Н.р./ В кн.: Нelicobacter рylori: революция в гастроэнтерологии.- М., 1999.- С. 46–53.

6. Астахин А.В., Левитан Б.Н., Дудина О.С. и соавт. Регуляторные цитокины сыворотки крови при хронических гепатитах и циррозах печени// Рос. журн. гастроэнтерол., гепатол., колопроктол.- 2002.- 12.- 5.- С. 80.

7. Гудкова Р.Б., Жукова С.Г., Крумс Л.М. Сывороточные цитокины при глютеновой энтеропатии// Рос. гастроэнтер. журн.- 2001.- № 2.- С. 121.

8. Жукова Е.Н. Сывороточный интерлейкин 8 в различные периоды течения хронического рецидивирующего панкреатита и его участие в патогенезе заболевания// Росс. гастроэнтерол. журн.- 2000.- № 1.- С. 15–18.

9. Кондрашина Э.А., Калинина Н.М., Давыдова Н.И., Барановский А.Ю., Кондрашин А.С. Особенности цитокинового профиля у пациентов с хроническим H. pylory-ассоциированным гастритом и язвенной болезнью// Цитокины и воспаление.- 2002.- т. 1.- № 4.- С. 3–11.

10. Лазебник Л.Б., Царегородцева Т.М., Серова Т.И. и соавт. Цитокины и цитокинотерапия при болезнях органов пищеварения// Тер. арх.- 2004.- № 4.- С. 69–72.

11. Царегородцева Т.М., Серова Т.И. Цитокины в гастроэнтерологии.- М.: Анахарсис, 2003.- 96 с.

12. Царегородцева Т.М., Винокурова Л.В., Живаева Н.С. Цитокиновый статус при хроническом панкреатите алкогольной и билиарной этиологии// Тер. арх.- 2006.- № 2.- С. 57–60.

13. Логинов А.С., Царегородцева Т.М., Серова Т.И. и соавт. Интерлейкины при хроническом вирусном гепатите// Тер. арх.- 2001.- № 2.- С. 17–20.

14. Павленко В.В. Интерлейкин-1b и регенераторная активность слизистой оболочки толстого кишечника при язвенном колите// Рос. журн. гастроэнтер., гепатол., колопроктол.- 2002.- т. ХII.- № 5.- С. 58.

15. Семененко Т.А. Клеточный имунный ответ при гепатите С// Вирусные гепатиты.- 2000.- № 1.- (8).- С. 3–9.

16. Соколова Г.Н., Царегородцева Т.М., Зотина М.М., Дубцова Е.А. Интерлейкины при язвенной болезни желудка и 12-перстной кишки// Рос. гастроэнтерол. журн.- 2001.- № 2.- С. 147–148.

17. Ткаченко Е.И., Еремина Е.И. Некоторые комментарии к современному состоянию проблемы язвенной болезни// Гастроэнтерология.- СПб.- 2002.- № 1.- С. 2–5.

18. Трухан Д.И. Клинико-иммунологические варианты течения хронического панкреатита// Тер. арх.- 2001.- № 2.- С. 20–23.

19. Шерлок Ш., Дулли Дж. Заболевания печени и желчных путей. М.: Медицина, 1999.- С. 92–95.

20. Шичкин В.П. Патогенетическое значение цитокинов и перспективы цитокиновой/антицитокиновой терапии// Иммунология.- 1998.- № 2.- С. 9–13.

21. Змызгова А.В. Интерферонотерапия вирусных гепатитов.- М., 1999.

22. Долгушина А.И. Бета-лейкин в лечении язвенной болезни// Цитокины и воспаление.- 2002.- т. 1.- № 2.- С. 34.

23. Москалев А.В., Голофеевский В.Ю., Ботиева В.И. и соавт. Коррекция бета-лейкином нарушений цитокинового статуса у больных с хроническими эрозиями желудка// Гастроэнтерология.- СПб.- 2003.- № 2.- 3.- С. 110.

24. Панина А.А., Антонов Ю.В., Недогода В.В. Опыт применения ронколейкина у больных хроническим вирусным гепатитом В// Мед. иммунология.- СПб.- 2002.- 4.- 2.- С. 370–371.

25. Скляр Л.Ф., Маркелова Е.В. Цитокинотерапия рекомбинантным интерлейкином 2 (Ронколейкином) больных хроническим вирусным гепатитом С// Цитокины и воспаление.- 2002.- т. 1.- № 4.- С. 43–46.

26. Ильченко Л.Ю., Царегородцева Т.М. Интерфероны и интерферонотерапия при хронических вирусных гепатитах// Эксперим. и клинич. гастроэнтерол.- 2003.- № 1.- С. 126.

27. Маммаев С.Н., Лукина Е.А., Ивашкин В.Т. и соавт. Продукция цитокинов у больных хроническим вирусным гепатитом С на фоне терапии интерферономa// Клинич. лаборат. диагностика.- 2001.- № 8.- С. 45–47.

28. Panaccione R., Ricart E., Sandborn W.J. et al. Infliximab for Crohn`s disease in clinical practice at the Mayo Clinic// Am..J.Gastroenterol..- 2001.- 96.- P. 722–729.

29. Sandborn W.J., Hanauer S.B. Infliximab in the treatment of Chrohn`s Disease// Am.J.Gastroenterol.- 2002.- v. 97.- № 12.- P. 2962–2972.

30. Tremaine W.I., Sands B.E., Rutgeerts P.J. et al. Infliximab in the treatment of severe, steroid-refractory ulcerative colitis// J.B.D.- 2001.- 7.- P. 83–88.

31. Wagner C., Cornillie F., Shealy D. et al. Infliximab induced potent antiflammatory and local immunomodulatory activity but no systemic immune supression in patients with Crohn`s disease// Aliment. Pharmacol. Ther.- 2001.- 15.- P. 463–473.

32. Белоусова Е.А. Инфликсимаб — новый этап в лечении болезни Крона// Фарматека.- 2002.- № 9.- С. 17–25.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «api-clinic.ru» — Центр естественной медицины