Гистологический состав флоэмы и ксилемы. Гистологический состав флоэмы и ксилемы Волокна входят в состав а эпидермы флоэмы

ФЛОЭМА ФЛОЭМА

(от греч. phloios - кора), ткань растений, осуществляющая транспорт продуктов фотосинтеза от листьев к местам потребления и отложения в запас (подземным органам, точкам роста, зреющим плодам и семенам и т. д.). Первичная Ф., к-рую подразделяют на протофлоэму и метафлоэму, дифференцируется из прокамбия, вторичная (луб) - производная камбия. В стеблях Ф. находится снаружи (у нек-рых растений и с внутр. стороны) от ксилемы. В листьях Ф. обращена к ниж. стороне пластинки, в корнях с радиальным проводящим пучком тяжи Ф. чередуются с тяжами ксилемы. Ф. участвует также в отложении запасных веществ, выделении конечных продуктов обмена, создании опорной системы растения. Ф. Состоит из проводящих элементов, клеток флоэмной паренхимы, волокон и склереид. У растений с активным вторичным утолщением имеются радиальные слои паренхимных клеток - лубяные лучи. У архегониальных растений проводящие элементы представлены прозенхимными ситовидными клетками, на боковых стенках к-рых расположены участки с тонкими канальцами - ситовидные поля. Для цветковых растений характерны ситовидные трубки - однорядные тяжи удлинённых клеток (члеников), конечные стенки к-рых, несущие ситовидные поля, наз. ситовидными пластинками. Зрелые ситовидные элементы обычно безъядерные, поэтому для их нормального функционирования важно наличие контактов с живыми паренхимными клетками. У голосеменных это клетки Страсбургера, находящиеся в тяжевой паренхиме или лучах, прилегающих к ситовидным клеткам, у цветковых - сопровождающие клетки, развивающиеся из той же материнской клетки, что и членик ситовидной трубки. Остальные клетки флоэмной паренхимы могут быть крахмалоносными, кристаллоносными, нек-рые из них участвуют в образовании вместилищ выделений (напр., смолы) или склерифицируются, превращаясь в склереиды. Состав элементов Ф., особенности их строения и расположения специфичны для каждого вида растений. (см. КОРЕНЬ , СТЕБЕЛЬ) рис. при ст.

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)

флоэ́ма

Проводящая ткань высших растений, осуществляющая транспорт продуктов фотосинтеза (ассимилятов) от листьев к местам их потребления или запасания – корням, точкам роста, плодам и т.д. Первичная флоэма образуется верхушечной меристемой, вторичная флоэма, или луб, – камбием . Основной элемент флоэмы – ситовидные трубки, по которым и происходит транспорт ассимилятов. Скорость их передвижения по флоэме составляет 50-150 см/ч, что выше той скорости, которая могла бы быть в результате свободной диффузии. У разных систематических групп растений (даже у разных видов одного рода) состав и строение флоэмы имеют различия.

.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)


Синонимы :

Смотреть что такое "ФЛОЭМА" в других словарях:

    ФЛОЭМА, снабженная сосудами ткань растений, осуществляющая транспорт продуктов фотосинтеза от листьев к местам потребления. Флоэма включает несколько видов КЛЕТОК. Самые важные из них удлиненные пустотелые клетки, называемые клетками ситовидных… … Научно-технический энциклопедический словарь

    - (от греч. phloios кора лыко), ткань высших растений, служащая для проведения к корням органических веществ, которые синтезируются в листьях (сахароза и др.). Основные элементы флоэмы ситовидные трубки, клетки спутницы, паренхимные клетки и… … Большой Энциклопедический словарь

    Луб Словарь русских синонимов. флоэма сущ., кол во синонимов: 2 луб (4) ткань (474) … Словарь синонимов

    - (от греческого phloios кора, лыко), ткань высших растений, осуществляющая транспортировку продуктов фотосинтеза от листьев к другим органам (зреющим плодам, семенам, корням) … Современная энциклопедия

    Часть сосудистого пучка растений. Как элементы проводящиеводу по растению, так и элементы, проводящие органические вещества,собраны в особые сосудистые пучки и притом так, что часть пучка занятаэлементами, проводящими воду, а остальная часть… … Энциклопедия Брокгауза и Ефрона

    Син. термина луб. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия

    Флоэма - (от греческого phloios кора, лыко), ткань высших растений, осуществляющая транспортировку продуктов фотосинтеза от листьев к другим органам (зреющим плодам, семенам, корням). … Иллюстрированный энциклопедический словарь

    Поперечный срез стебля льна: 1. рыхлая сердцевина, 2. протоксилема, 3. ксилема, 4. флоэма, 5 … Википедия

    - (от греч. phloiós кора, лыко), ткань высших растений, служащая для проведения к корням органических веществ, которые синтезируются в листьях (сахароза и др.). Основные элементы флоэмы ситовидные трубки, клетки спутницы, паренхимные клетки и… … Энциклопедический словарь

В переводе с греческого языка этот термин означает «кора». Также ее часто называют лубом. Флоэма - ткань, благодаря которой происходит перенос питательных веществ к органам растений. Какое строение она имеет? Каким образом происходит транспорт питательных веществ? Чем отличается от ксилемы?

Проводящие ткани растений: ксилема и флоэма

Для переноса минеральных веществ и воды к разным частям растения необходима проводящая ткань. Она состоит их двух типов сложных тканей - флоэмы и ксилемы.

Ксилему также называют древесиной, а флоэму - лубом. Они, как правило, находятся в непосредственной близости друг от друга и формируют проводящие пучки (также их называю сосудисто-волокнистыми). По взаимному расположению флоэмы и ксилемы выделяют несколько типов проводящих тканей:

  1. Коллатериальные (ткани прилегают друг к другу и расположены равноудаленно от осевой части органа растения).
  2. Биколлатериальные (ксилема окружена двумя участками флоэмы).
  3. Концентрические (когда ксилема окружает флоэму и наоборот).
  4. Радиальные (когда происходит чередование флоэмы и ксилемы по радиусам).

Строение флоэмы

Флоэма растений - это особый вид проводящей ткани, которая необходима для передачи питательных веществ, образованных в результате фотосинтеза, к органам растения, где они используются. По типу происхождения она подразделяется на следующие виды:

  • первичная (дифференцированная из прокамбия);
  • вторичная (образованная из камбия).

Главное их отличие заключается в том, что в первичной флоэме отсутствуют сердцевидные трубки. Однако их клеточный состав идентичен.

Флоэма состоит их следующих типов клеток:

  • ситовидные (обеспечивают основной перенос веществ и не имеют клеточных ядер);
  • склеренхимные (служат для опоры);
  • паренхимные (выполняют функцию ближнего радиального транспорта).

Главная особенность ситовидных клеток - наличие специальных пор в клеточных стенках. Их происхождение до сих пор неясно. Каналы ситовидных элементов выстланы каллозой (полисахарид), которая может в них накапливаться. Каллоза может закупоривать каналы этих клеток, к примеру, когда растение находится в фазе покоя в зимний период.

Флоэмный транспорт

Флоэма - это ткань, по которой перемещаются концентрированные растворы углеводородов (по большей части сахарозы), образованных в результате фотосинтеза. Помимо этого, переносятся ассимиляты и метаболиты, но в меньшей концентрации. Скорость переноса веществ достигает нескольких десятков сантиметров в течение часа.

Перенос веществ осуществляется от органов, где активно образуются, к тем частям растений, где они используются или запасаются. Активный перенос веществ происходит к корням, побегам, формирующимся листьям, репродуктивным органам, клубням, луковицам, корневищам.

В результате экспериментов ученые выяснили, что транспорт осуществляется от органов-доноров к тем частям растений, которые расположены наиболее близко к ним. Помимо этого, перенос веществ является двусторонним. Поэтому растение в разные периоды вегетации может накапливать питательные вещества или их расходовать.

Флоэма: функции

Фотосинтез осуществляется в хлоропластах листьев при участии солнечного света. Его продукты, вода и прочие растворы минеральных веществ, поглощенных корнями растений, необходимы для функционирования абсолютно всех клеток. Флоэма - это ткань, обеспечивающая их транслокацию. Растворы перетекают по ситовидным элементам от зон с высоким гидростатическим давлением к областям его низкого значения. Поэтому главная функция флоэмы - транспортная.

Отличие флоэмы от ксилемы

Несмотря на то что ксилема и флоэма выполняют сходные функции и находятся в непосредственной близости, они имеют различия. Перемещение веществ в ксилеме происходит от корня к листьям. Более того, клетками, образующими этот вид ткани, являются сосудистые элементы, трахеиды, волокна и древесинная паренхима. Ксилема необходима для переноса воды вместе с растворенными питательными веществами.

Итак, флоэма - это один из видов проводящей ткани растения. Она служит для переноса питательных веществ из тех органов растения, где они активно образуются, в те его части, где они запасаются либо потребляются. Флоэма представлена тремя видами клеток - ситовидными, склеренхимными и паренхимными. Основную транспортную функцию выполняют ситовидные клетки со специальными порами, которые не имеют ядер.

Перенос веществ может осуществляться в двух направлениях, а его скорость иногда достигает нескольких десятков сантиметров в час. Другой сходной по функциям с флоэмой, является ксилема. Но главное их отличие заключается в том, что ксилема переносит только в одном направлении (от корней к побегам) воду с растворенными в ней минеральными веществами.

  • 9. Запасные углеводы (крахмал, инулин, сахароза, гемицеллюлоза и т.Д.): химическая природа, свойства, образование и накопление в клетке, значение, практическое использование.
  • 10. Виды крахмала, форма накопления, реакции обнаружения. Крахмальные зерна: образование, строение, типы, места накопления, диагностические признаки, использование.
  • 11. Инулин: форма накопления, реакции обнаружения, диагностические признаки.
  • 13. Жирное масло: химическая природа и свойства, места и форма накопления в клетке, отличия от эфирного масла, качественные реакции, значение и практическое использование.
  • 14. Кристаллические включения клетки: химическая природа, образование и локализация, разнообразие форм, диагностические признаки, качественные реакции.
  • 15. Клеточная оболочка: функции, образование, структура, химический состав, вторичные изменения; поры клеточной оболочки: их образование, строение, разновидности, назначение.
  • 16. Характеристика, значение и использование веществ клеточной оболочки, качественные микрореакции.
  • 18. Образовательные ткани, или меристемы: функции, особенности строения клеток, классификация, производные и значение меристем.
  • 19. Покровные ткани: функции и классификация.
  • 20. Первичная покровная ткань - эпидерма: функции, особенности строения.
  • 21. Основные (базисные) клетки эпидермы: строение, функции, диагностические признаки.
  • 23. Трихомы: функции, образование, разнообразие, классификация, морфо-физиологические особенности, диагностическое значение, практическое использование.
  • 24. Покровно-всасывающая ткань корня - эпиблема, или ризодерма: образование, особенности строения и функционирования.
  • 25. Вторичные покровные ткани - перидерма и корка: их образование, состав, значение, использование. Строение и функции чечевичек, их диагностические признаки.
  • 26. Основные ткани - ассимиляционная, запасающая, водо- и газонакапливающая: функции, особенности строения, топография в органах, диагностические признаки.
  • 27. Выделительные, или секреторные структуры: функции, классификация, диагностическое значение.
  • 30. Механические ткани (колленхима, склереиды, склеренхимные волокна): функции, особенности строения, размещение в органах, классификация, типы, таксономическое и диагностическое значение.
  • 31. Проводящие ткани: функции, классификация.
  • 32. Проводящие ткани, которые обеспечивают восходящий ток воды и минеральных веществ - трахеиды и сосуды: образование, особенности строения, типы, таксономическое и диагностическое значение.
  • 34. Комплексные ткани - флоэма (луб) и ксилема (древесина): образование, гистологический состав, топография в органах.
  • 35. Проводящие пучки: образование, состав, типы, закономерности размещения в органах, таксономическое и диагностическое значение.
  • 37. Эволюция тела растительных организмов. Органы высших растений. Вегетативные органы, морфолого-анатомическая и функциональная целостность.
  • 38. Корень: определение, функции, виды корней, типы корневых систем. Специализация и метаморфозы корней.
  • 39. Зоны корня, их строение и функции. Первичное и вторичное анатомическое строение корней и корнеплодов: типы, особенности строения, признаки, имеющие значение для описания и диагностики корней.
  • 41. Основные жизненные формы растений, их характеристика, примеры.
  • 42. Почки: определение, строение, классификация по положению, структуре, функциями.
  • 47. Надземные метаморфозы побега - колючки, усы, батоги, усики и др..: Происхождение, строение, функции, диагностические признаки.
  • 48. Подземные метаморфозы побега - корневище, клубень, луковица, клубнелуковица: строение, морфологические типы, признаки, использование.
  • 49. Анатомические особенности строения корневищ однодольных и двудольных растений, диагностические признаки.
  • 50. Генеративные органы растения: определение, происхождение, функции.
  • 51. Соцветие как специализированный побег, несущий цветки: происхождение, биологическая роль, части, классификация и характеристика. Признаки, служащие для описания и диагностики соцветий.
  • 52. Цветок: определение, происхождение, функции, симметрия, части цветка.
  • 53. Цветоножка, цветоложе: определение, функции, формы цветоложа и расположение на нем частей цветка; образования гипантия, его участие в формировании плода.
  • 54. Околоцветник: его типы, характеристика составных частей - чашечки и венчика: их функции, обозначения в формуле, разнообразие типов и форм, метаморфозы и редукция, диагностическое значение.
  • 55. Андроцей: определение. Строение тычинки, назначение ее частей, их редукция; структура, значение пыльцевого зерна. Типы Андроцея, обозначения в формуле. Таксономические признаки Андроцея.
  • 57. Пол цветка. Домность растений.
  • 58. Формулы и диаграммы цветков, их составление и трактовки.
  • 59. Значение морфоструктуры цветка в систематике растений и при диагностике лекарственного растительного сырья.
  • 60. Типы и способы опыления. Двойное оплодотворение: суть процесса, формирование семян и плодов.
  • 63. Размножение и репродукция: определение, значение, формы. Бесполое размножение зооспорами или спорами. Вегетативное размножение, его суть, способы, значение. Половое размножение, его типы.
  • 64. Понятие о жизненных циклах, чередовании поколений. Значение и особенности жизненного цикла водорослей, грибов и высших растений.
  • 66. Надцарство прокариоты, отдел цианобактерии (сине-зеленые водоросли): особенности строения клеток, распространение, питание, размножение, значение, использование представителей (спирулина).
  • 67. Надцарство эукариоты: особенности строения клеток, классификация.
  • 72. Высшие семенные растения: прогрессивные признаки, классификация.
  • 74. Отдел покрытосеменные: прогрессивные признаки, общая характеристика, классификация, сравнительная характеристика классов, дво -и однодольные
  • 76. Экология растений как раздел ботаники: цель, задачи, объект исследования. Основные условия существования организмов, экологические факторы, их влияние на растения.
  • 77. Влага как экологический фактор, экологические группы растений - гидрофиты, гигрофиты, мезофиты, ксерофиты, склерофиты, суккуленты.
  • 78. Тепло как экологический фактор, жаростойкость и морозостойкость, световой режим, светолюбивые, тенелюбивые и теневыносливые растения.
  • 79. Грунтовые или эдафичные факторы, физические свойства и солевой режим почвы, растения псаммофиты и галофиты.
  • 80. Воздух как экологический фактор, его влияние на растения.
  • 81. Биотические факторы. Антропогенный фактор. Интродукция и акклиматизация растений.
  • 82. Фенология, как раздел экологии растений. Фазы вегетации растений, их характеристика, значения для фармакогнозии.
  • 83. Фенология растений: цели, задачи, объекты исследования. Растительные сообщества: формирование и структура, растительные зоны и основные типы растительного покрова Земли.
  • 84. Типы лесов, растительность, главных лесообразующих пород, их народнохозяйственное значение, использование, охрана.
  • 85. Растительность степей, лекарственные виды, их биологические особенности.
  • 86. Влажные и сухие субтропики; явление вертикальной поясности; растительность горных областей Крыма, Карпат, охрана редких видов, ценные субтропические культуры.
  • 87. Луга и болота, лекарственные растения этих группировок на территории Украины.
  • 88. Сорняки: определение, биологические особенности, классификация, приспособления к распространению, лекарственные виды сорняков, их использование.
  • 89. География растений: цели, задачи, объекты исследования. Понятие ареал, формирования ареалов, типы, размеры ареалов.
  • 90. Флора и ее главные элементы. Богатство и ресурсы флоры Украины.
  • 91. Растения реликты, эндемики и космополиты.
  • 92. Охрана растительного мира и лекарственных растений. Ресурсы лекарственных растений в Украине, их рациональная эксплуатация, охрана, обновления, нормативные документы.
  • 34. Комплексные ткани - флоэма (луб) и ксилема (древесина): образование, гистологический состав, топография в органах.

    Проводящие ткани в органах растения объединяются с другими элементами, образуя сложные ткани - ксилему и флоэму .

    К с и л е м а, или д р е в е с и н а, состоит из первичных (прокамбиальных) и вторичных (камбиальных) элементов, выполняющих определенные функции: проводящие ткани - сосуды и трахеиды, механические - древесинные волокна, запасающие ткани - древесинная паренхима и заменяющие волокна.

    Ф л о э м а, или л у б, также включает элементы первичного (прокамбиального) и вторичного (камбиального) происхождения различного назначения: проводящие ткани - ситовидные клетки или ситовидные трубки с клетками-спутницами, механическая ткань - лубяные волокна, запасающая ткань - лубяная паренхима. Иногда механические волокна отсутствуют. Часто во флоэме образуются млечники или другие секреторные структуры.

    35. Проводящие пучки: образование, состав, типы, закономерности размещения в органах, таксономическое и диагностическое значение.

    Ксилема и флоэма обычно сопровождают друг друга, формируя проводящие, или сосудисто-волокнистые, пучки .

    Проводящие пучки, образованные прокамбием, не имеющие камбия, называются закрытыми , а пучки с камбием - открытыми, поскольку могут длительно увеличиваться в размерах. В зависимости от расположения ксилемы и флоэмы различают пучки: коллатеральные, биколлатеральные, концентрические и радиальные.

    Коллатеральные пучки характеризуются расположением флоэмы и ксилемы бок о бок, на одном радиусе. При этом в осевых органах флоэма занимает наружную часть пучка, ксилема - внутреннюю, а в листьях - наоборот. Коллатеральные пучки могут быть закрытыми (однодольные растения) и открытыми (двудольные).

    Биколлатеральные пучки всегда открытые, с двумя участками флоэмы - внутренней и наружной, между которыми расположена ксилема. Камбий находится между наружной флоэмой и ксилемой. Биколлатеральные сосудисто-волокнистые пучки характерны представителям сем. тыквенные, пасленовые, кутровые и некоторые др.

    Концентрические пучки закрытые. Они бывают центрофлоэмными, если ксилема окружает флоэму, и центроксилемными, если флоэма окружает ксилему. Центрофлоэмные пучки формируются чаще у однодольных растений, центроксилемные - у папоротниковидных.

    Радиальные пучки закрытые. В них флоэма и ксилема чередуются по радиусам. Радиальные пучки характерны для зоны всасывания корней, а также зоны проведения корней однодольных растений.

    36. Морфология как раздел ботаники: цель, методы, основные морфологические понятия. Общие закономерности растительных организмов (орган, полярность, симметрия, редукция, метаморфоз, аналогичность и гомологичнисть т.п.).

    Морфология растений, фитоморфология, наука о закономерностях строения и процессах формообразования растений в их индивидуальном и эволюционно-историческом развитии. Один из важнейших разделов ботаники. По мере развития М. р. из неё выделились как самостоятельные науки анатомия растений, изучающая тканевое и клеточное строение их органов, эмбриология растений, изучающая развитие зародыша, и цитология - наука о строении и развитии клетки. Таким образом, М. р. в узком смысле изучает строение и формообразование, главным образом на организменном уровне, однако в её компетенцию входит также рассмотрение закономерностей популяционно-видового уровня, поскольку она имеет дело с эволюцией формы.

    Основные проблемы М. р.: выявление морфологического многообразия растений в природе; изучение закономерностей строения и взаимного расположения органов и их систем; исследования изменений общей структуры и отдельных органов в ходе индивидуального развития растения (онтоморфогенез); выяснение происхождения органов растений в ходе эволюции растительного мира (филоморфогенез); изучение воздействия различных внешних и внутренних факторов на формообразование. Таким образом, не ограничиваясь описанием определённых типов строения, М. р. стремится выяснить динамику структур и их происхождение. В форме растительного организма и его частей внешне проявляются закономерности биологической организации, т. е. внутренние взаимосвязи всех процессов и структур в целостном организме.

    В теоретической М. р. различают 2 взаимосвязанных и дополняющих друг друга подхода к истолкованию морфологических данных: выявление причин возникновения тех или иных форм (с точки зрения факторов, непосредственно действующих на морфогенез) и выяснение биологического значения этих структур для жизнедеятельности организмов (с точки зрения приспособленности), что ведёт к сохранению определённых форм в процессе естественного отбора.

    Основные методы морфологических исследований - описательный, сравнительный и экспериментальный. Первый заключается в описании форм органов и их систем (органография). Второй - в классификации описательного материала; применяется также при исследовании возрастных изменений организма и его органов (сравнительно-онтогенетический метод), при выяснении эволюции органов путём сопоставления их у растений разных систематических групп (сравнительно-филогенетический метод), при изучении влияния внешней среды (сравнительно-экологический метод). И, наконец, с помощью третьего - экспериментального - метода искусственно создаются контролируемые комплексы внешних условий и изучается морфологическая реакция растений на них, а также путём хирургического вмешательства изучаются внутренние взаимосвязи между органами живого растения.

    К ряду общих закономерностей относятся наличие определенного типа симметрии, свойства полярности, способность к метаморфизированию, редукции и абортированию, регенерации.

    Симметрия . В морфологии растений под симметрией понимают возможность разделить орган на несколько зеркально подобных половинок. Плоскость, которая делит орган на симметричные части, называется плоскостью, или осью, симметрии. Вегетативные органы могут быть моносимметричными, бисимметричными и полисимметричными (радиальносимметричными). Через моносимметричный орган можно провести только одну плоскость симметрии, следовательно, орган можно разделить только на две зеркально подобные половинки. Моносимметричными являются листья целого ряда растений (сирень обыкновенная – Syringa vulgaris, береза повислая – Betula pendula, копытень европейский – Asarum europaeum и др.). Изредка встречаются моносимметричные стебли (род литопс – Lithops из семейства Кактусовые, крылатый стебель чины лесной – Lathyrus sylvestris) и корни (досковидные корни фикусов). Бисимметричными являются уплощенные стебли, через них можно провести две плоскости симметрии (мятлик сплюснутый – Poa compressa, опунция многоколючковая – Opuntia polyacantha). Если через орган можно провести более двух плоскостей симметрии, орган является полисимметричным. Полисимметричны круглые стебли (подсолнечник однолетний – Helianthus annuus), корни (тыква обыкновенная – Cucurbita pepo), корнеплоды (редька посевная – Raphanus sativus, свекла обыкновенная – Beta vulgaris), корневые шишки некоторых растений (чистяк весенний – Ficaria verna, аспарагус густоцветковый «Шпренгера» – Asparagus densiflorus «schprengeri»), унифациальные листья (очиток едкий – Sedum acre , лук репчатый – Allium cepa), столоны (картофель – Solanum tuberosum). Особым типом симметрии является асимметрия. Через асимметричные органы нельзя провести ни одной плоскости симметрии. Асимметричны листья вязов (вяз гладкий – Ulmus laevis, вяз шершавый – Ulmus scabra), некоторых бегоний (бегония королевская – Begonia rex, бегония пятнистая – Begonia maculata).

    Полярность – одна из общих закономерностей, присущих не только всему растительному организму, но и отдельным его органам, а также клеткам. Полярность характеризуется наличием морфологических и физиологических различий на противоположных концах тела растения или его элементов. Присуща полярность корням и листьям, у них имеются четкие различия верхушек и оснований. Благодаря свойству полярности органы растений определенным образом ориентированы в пространстве. Процесс поляризации очень сложен и не до конца изучен.

    Все вегетативные органы способны к метаморфозам . Наибольшее разнообразие метаморфизированных структур характерно как для побегов в целом, так и так и для их компонентов – листьев. Корни, находящиеся в относительно стабильных условиях существования, метаморфизируются реже, причем метаморфозы корней у автотрофных наземных растений связаны главным образом с выполнением запасающей функции. В процессе морфологической эволюции происходило не только морфо-физиологическое усложнение различных органов, но под влиянием условий существования у некоторых видов произошла редукция или даже абортирование отдельных органов или их частей.

    При абортировании орган полностью исчезает. Так, у папоротника сальвинии плавающей (Salvinia natans) абортирован корень. У повилик абортированы листья. Редукция и абортирование органов, как и метаморфозы, – адаптивные процессы, ответная реакция растения на условия существования. Часто термины «редукция» и «абортирование» в ботанической литературе употребляют как синонимы.

    Общим свойством вегетативных органов растений является и способность к регенерации , т. е. к восстановлению утраченных частей организма. Регенерация лежит в основе вегетативного размножения растений. Она может происходить как в естественных условиях, так и может быть получена в условиях эксперимента. Способность к регенерации у разных таксонов различна. Чем выше степень морфолого-анатомической дифференциации растения и его органов, тем слабее у них способность к регенерации. Регенерация происходит благодаря восстановлению меристематической активности клеток паренхимы и их последующей дифференциации в ткани вегетативных органов.


    Этот тип относится к сложным тканям, состоит из по-разному дифференцированных клеток. Кроме собственно проводящих элементов, в ткани присутствуют механические, выделительные и запасающие элементы. Проводящие ткани объединяют все органы растения в единую систему. Выделяют два типа проводящих тканей: ксилему и флоэму (греч.xylon – дерево; phloios – кора, лыко). Они имеют как структурные, так и функциональные различия.

    Проводящие элементы ксилемы образованы мертвыми клетками. По ним осуществляется дальний транспорт воды и растворённых в ней веществ от корня к листьям. Проводящие элементы флоэмы сохраняют живой протопласт. По ним осуществляется дальний транспорт от фотосинтезирующих листьев к корню.

    Проводящие ткани. А – ксилема; Б - флоэма

    1 – сосуды ксилемы; 2 – трахеиды; 3 – клетки древесной паренхимы; 4 – поры; 5 - ситовидные трубки; 6 – клетки – спутницы; 7 – ситовидные поля; 8 – клетки лубяной паренхимы.

    Обычно ксилема и флоэма располагаются в теле растения в определённом порядке, образуя слои или проводящие пучки . В зависимости от строения различают несколько типов проводящих пучков, которые характерны для определённых групп растений. В коллатеральном открытом пучке между ксилемой и флоэмой находится камбий, обеспечивающий вторичный рост. В биколлатеральном открытом пучке флоэма располагается относительно ксилемы с двух сторон. Закрытые пучки не содержат камбия, а отсюда к вторичному утолщению не способны. Можно встретить ещё два типа концентрических пучков, где или флоэма окружает ксилему, или ксилема – флоэму.

    Ксилема (древесина). Развитие ксилемы у высших растений связано с обеспечением водного обмена. Так как чрез эпидерму постоянно выводится вода, такое же количество влаги должно поглощаться растением и добавляться к органам, которые осуществляют транспирацию. Следует учитывать, что наличие живого протопласта в проводящих воду клетках сильно замедляло бы транспорт, мёртвые клетки здесь оказываются более функциональными. Однако мёртвая клетка не обладает тургесцентностью , поэтому механическими свойствами должна обладать оболочка. Примечание: тургесценция – состояния растительных клеток, тканей и органов, при которых они становятся упругими вследствие давления содержимого клеток на их эластичные оболочки. Действительно, проводящие элементы ксилемы состоят их вытянутых вдоль оси органа мертвых клеток с толстыми одревесневшими оболочками.

    Первоначально ксилема образуется из первичной меристемы - прокамбия, расположенного на верхушках осевых органов. Вначале дифференцируется протоксилема, затем метаксилема. Известно три типа формирования ксилемы. При экзархном типе элементы протоксилемы сначала появляются на периферии пучка прокамбия, затем в центре возникают элементы метаксилемы. Если процесс идёт в противоположном направлении (т.е. от центра к периферии), то это эндархный тип. При мезархном типе ксилема закладывается в центре прокамбиального пучка, после чего откладывается как по направлению к центру, так и к периферии.

    Для корня характерен экзархный тип закладки ксилемы, для стеблей – эндархный. У низкоорганизованных растений способы формирования ксилемы очень разнообразны и могут служить систематическими характеристиками.

    У некоторых растений (например, однодольных) все клетки прокамбия дифференцируются в проводящие ткани, которые не способны к вторичному утолщению. У других же форм (например, древесных) между ксилемой и флоэмой остаются латеральные меристемы (камбий). Эти клетки способны делиться, обновляя ксилему и флоэму. Такой процесс называется вторичным ростом. У многих, произрастающих в сравнительно стабильных климатических условиях, растений, рост идёт постоянно. У форм, приспособленных к сезонным изменениям климата, - периодически. В результате этого образуются хорошо выраженные годовые кольца прироста.

    Основные этапы дифференциации клеток прокамбия. Её клетки с тонкими оболочками, не препятствующими их растяжению при росте органа. Затем протопласт начинает откладывать вторичную оболочку. Но этот процесс имеет выраженные особенности. Вторичная оболочка откладывается не сплошным слоем, что не позволило бы клетке растягиваться, а в виде колец или по спирали. Удлинение клетки при этом не затруднено. У молодых клеток кольца или витки спирали расположены близко друг к другу. У зрелых клеток расходятся в результате растяжения клетки. Кольчатые и спиральные утолщения оболочки росту не препятствуют, однако механически они уступают оболочкам, где вторичное утолщение образует сплошной слой. Поэтому после прекращения роста в ксилеме формируются элементы со сплошной одревесневшей оболочкой ( метаксилемой ). Следует отметить, что вторичное утолщение здесь не кольчатое или спиральное, а точечное, лестничное, сетчатое. Её клетки растягиваться, не способны и в течение нескольких часов отмирают. Этот процесс у расположенных поблизости клеток происходит скоординировано. В цитоплазме появляется большое количество лизосом. Затем распадаются, а находящиеся в них ферменты разрушают протопласт. При разрушении поперечных стенок расположенные цепочкой друг над другом клетки образуют полый сосуд. Большинство покрытосеменных растений и некоторых папоротникообразных обладают сосудами.

    Проводящую клетку не образующую сквозных перфораций в своей стенке, называют трахеидой. Передвижение воды по трахеидам идёт с меньшей скоростью, чем по сосудам. Дело в том, что у трахеидов нигде не прерывается первичная оболочка. Между собой трахеиды сообщатся посредством пор. Следует уточнить, что у растений пора представляет собой лишь углубление во вторичной оболочке до первичной оболочки и никаких сквозных перфораций между трахеидами не имеется.

    Чаще всего встречаются окаймлённые поры. У них канал, обращённый в полость клетки, образует расширение – камеру поры. Поры большинства хвойных растений на первичной оболочке имеют утолщение – торус, который представляет собой своеобразный клапан и способен регулировать интенсивность транспорта воды. Смещаясь, торус перекрывает ток воды через пору, но после этого вернуться в прежнее положение он уже не может, совершая одноразовое действие.

    Поры бывают более или менее округлыми, вытянутыми перпендикулярно вытянутой оси (группа этих пор напоминает лестницу, поэтому такую пористость называют лестничной). Через поры транспорт осуществляется как в продольном, так и в поперечном направлении. Поры присутствуют не только у трахеид, но и отдельных клеток сосудов, которые образуют сосуд.

    С точки зрения эволюционной теории трахеиды представляют собой первую и основную структуру, осуществляющую проведение воды в теле высших растений. Считают, что сосуды возникли из трахеид вследствие лизиса поперечных стенок между ними. Большинство папоротникообразных и голосеменных сосудов не имеют. Передвижение воды у них происходит посредством трахеид.

    В процессе эволюционного развития сосуды возникали у разных групп растений неоднократно, но наиболее важное функциональное значение они приобрели у покрытосеменных, у которых они имеются наряду с трахеидами. Считают, что обладание более совершенным механизмом транспорта помогло им не только выжить, но и достигнуть значительного разнообразия форм.

    Ксилема является сложной тканью, кроме водопроводящих элементов в ней содержатся и другие. Механические функции выполняют волокна либриформа ( лат. liber – луб, forma – форма). Присутствие дополнительных механических структур важно, так как, несмотря на утолщения, стенки водопроводящих элементов всё же слишком тонки. Они не способны самостоятельно удерживать большую массу многолетнего растения. Волокна развивались из трахеид. Для них характерны меньшие размеры, одревесневшие (лигнифицированные) оболочки и узкие полости. На стенке можно обнаружить, лишенные окаймления поры. Эти волокна проводить воду не могут, основная их функция опорная.

    В ксилеме имеются и живые клетки. Их масса может достигать 25% от общего объема древесины. Так как эти клетки имеют округлую форму, то их называют паренхимой древесины. В теле растения паренхима располагается двумя способами. В первом случае клетки располагаются в виде вертикальных тяжей – это тяжевая паренхима . В другом случае паренхима образует горизонтальные лучи. Они называются сердцевинными лучами , так как соединяют сердцевину и кору. Сердцевина выполняет ряд функций, в том числе и запасание веществ.

    Флоэма (луб). Это сложная ткань, так как образована разнотипными клетками. Основные клетки проводящие, называются ситовидными элементами . Проводящие элементы ксилемы образованы мёртвыми клетками, а у флоэмы они в течение периода функционирования сохраняют живой, хотя и сильно изменённый протопласт. По флоэме происходит отток пластических веществ от фотосинтезирующих органов. Способностью проводить органические вещества обладают все живые клетки растений. А отсюда, если ксилему можно обнаружить только у высших растений, то транспорт органических веществ между клетками осуществляется и у низших растений.

    Ксилема и флоэма развиваются из апикальных меристем. На первом этапе в прокамбиальном тяже формируется протофлоэма. По мере роста окружающих тканей она растягивается, и, когда рост завершается, вместо протофлоэмы формируется метафлоэма.

    У различных групп высших растений можно встретить два типа ситовидных элементов. У папоротникообразных и голосеменных он представлены ситовидными клетками. Ситовидные поля в клетках рассеяны по боковым стенкам. В протопласте сохраняется несколько деструктированное ядро.

    У покрытосеменных ситовидные элементы называются ситовидными трубками. Они сообщаются между собой через ситовидные пластинки. В зрелых клетках ядра отсутствуют. Однако рядом с ситовидной трубкой располагается клетка-спутница , образующаяся вместе с ситовидной трубкой в результате митотического деления общей материнской клетки. Клетка-спутница имеет более плотную цитоплазму с большим количеством активных митохондрий, а также полноценно функционирующее ядро, огромное количество плазмодесм (в десять раз больше, чем у других клеток). Клетки-спутницы оказывают воздействие на функциональную активность безъядерных ситовидных клеток трубок.

    Структура зрелых ситовидных клеток имеет некоторые особенности. Отсутствует вакуоль, поэтому цитоплазма сильно разжижается. Может отсутствовать (у покрытосеменных растений) или находиться в сморщенном функционально малоактивном состоянии ядро. Рибосомы и комплекс Гольджи также отсутствуют, но хорошо развит эндоплазматический ретикулум, который не только пронизывает цитоплазму, но и переходит в соседние клетки через поры ситовидных полей. Хорошо развитые митохондрии и пластиды встречаются в изобилии.

    Между клетками транспорт веществ идет через отверстия, расположенные на клеточных оболочках. Такие отверстия называются порами, но в отличие от пор трахеид, являются сквозными. Предполагают, что они представляют собой сильно расширенные плазмодесмы, на стенках, которых откладывается полисахарид каллоза. Поры располагаются группами, образуя ситовидные поля . У примитивных форм ситовидные поля беспорядочно рассеяны по всей поверхности оболочки, у более совершенных покрытосеменных растений располагаются на примыкающих друг к другу концах соседних клеток, образуя ситовидную пластинку . Если на ней находится одно ситовидное поле, её называют простой, если несколько – сложной.

    Скорость передвижения растворов по ситовидным элементам составляет до 150см ∕ час. Это в тысячу раз превышает скорость свободной диффузии. Вероятно, имеет место активный транспорт, а многочисленные митохондрии ситовидных элементов и клеток-спутниц поставляют для этого необходимую АТФ.

    Срок деятельности ситовидных элементов флоэмы зависит от наличия латеральных меристем. Если они имеются, то ситовидные элементы работают в течение всей жизни растения.

    Кроме ситовидных элементов и клеток-спутниц, во флоэме присутствуют лубяные волокна, склереиды и паренхима.

    

    это сложные ткани, которые кроме основных выполняют и дополнительные функции

    Флоэма (от греч. phloiós – кора, лыко) , ткань высших растений, служащая для проведения органических веществ к различным органам. Ксилема (от греч. xylon - срубленное дерево) (древесина) , ткань высших растений, служащая для проведения воды и растворов минеральных солей от корней к листьям и другим органам.

    Понятным языком——Ксиле́ма, или древеси́на - основная водопроводящая ткань сосудистых растений; один из двух подтипов проводящей ткани растений, наряду с флоэмой - лубом. Луб, лубо́к, флоэ́ма - подкорье, исподняя кора дерева, покрывающая заболонь.

    Ксиле́ма, или древеси́на - основная водопроводящая ткань сосудистых растений; один из двух подтипов проводящей ткани растений, наряду с флоэмой - лубом. Ксилема состоит из мёртвых одеревеневших клеток, имеющих отверстия (перфорацию) - трахеид, а также из сосудов, образованных при слиянии ряда клеток; волокон и паренхимных клеток. У ряда видов сосуды отсутствуют, у остальных видов сосуды развиты по-разному, наибольшего развития достигая у покрытосеменных. Клетки ксилемы объединяются в так называемые проводящие (сосудисто-волокнистые) пучки, которые при рассмотрении стебля в разрезе образуют кольцо. Основная функция - транспорт воды и минеральных солей от корней к листьям, то есть осуществляет восходящий ток.

    Флоэма это такая штука которая выпускает воду вниз с верху а кслиема наоборот поднимает воду и разделяе его на корень все такое

    ФЛОЭМА (от греч. phloios - кора, лыко) , ткань высших растений, служащая для проведения к корням органических веществ, которые синтезируются в листьях (сахароза и др.) . Основные элементы флоэмы - ситовидные трубки, клетки-спутницы, паренхимные клетки и механические волокна. Первичная флоэма - производное прокамбия, вторичная, или луб, - камбия. КСИЛЕМА (от греч. xylon - срубленное дерево) (древесина) , ткань высших растений, служащая для проведения воды и растворов минеральных солей от корней к листьям и другим органам. Состоит из проводящих элементов (трахеид, сосудов) , механических (либриформ) и паренхимных клеток.

    Войдите, чтобы написать ответ

    Основная статья: Растения

    Ткани — это группы клеток, имеющие сходное строе-ние и выполняющие одинаковые функции. Органы растений состоят из тканей: покров-ной, проводящей, механической, образовательной, основ-ной. Появление тканей, как и органов, связано с выходом растений на сушу.

    У растений выделяют несколько видов тканей.

    Покровные ткани растений

    Покровные ткани защищают тело растения от поте-ри влаги.

    Водоросли, живя в воде, не нуждаются в подобной защите.

    Однако, если водоросль изъять из воды, ее тело быстро высыхает, что свиде-тельствует об отсутствии специальных покровов, защищающих тело от потери влаги. В наземных условиях могли выжить только те рас-тения, у которых появились покровные ткани, поскольку наземные растения растут и развиваются при периодическом, а не постоянном увлажнении, часто в условиях продолжительного сухого периода.

    Покровные ткани также надежно защищают тело расте-ния от перепадов температур, механических повреждений, проникновения микроорганизмов.

    Покровные ткани осуществляют транспорт веществ в теле растений.

    Клетки покровных тканей плотно соединены меж-ду собой, часто имеют извилистые стенки. Межклет-ников нет. Клеточные оболочки часто утолщены и пропитаны различными веществами, повышающи-ми их защитные свойства. Для сообщения с внеш-ней средой в покровных тканях образуются специ-альные образования — устьица, чечевички.

    К проводящим тканям относятся луб и древе-сина.

    Луб

    Проводящие элементы луба — ситовидные трубки — это ряды вытянутых живых клеток.

    Их поперечные стенки (ситовидные пластинки) пронизаны отверстиями (наподобие сита). Через них проходят тяжи цитоплазмы, по которым из клетки в клетку передаются органические ве-щества. Рядом с ситовидными трубками распо-ложены клетки-спутницы. Они ускоряют прове-дение веществ по ситовидным трубкам.

    Древесина

    Древесина состоит из проводящих элементов: трахеид и сосудов.

    Трахеиды — это мертвые вытянутые клетки с сильно утолщенными оболочками и за-остренными концами. Связь между ними осуществля-ется через поры. Сосуды — длинные полые трубки, состоящие из цепочек мертвых клеток — члеников сосуда.

    В поперечных стенках есть крупные отвер-стия. По трахеидам и сосудом вода (à) передвигает-ся от корня в стебель и листья.

    Механические ткани растений

    Механические ткани составляют внутренний каркас тела растения.

    Они поддерживают растение в определенном по-ложении, обеспечивающем улавливание солнечного све-та и противостояние факторам окружающей среды (ветер, ливень).

    Механические ткани образованы как живыми, так и мертвыми клетками.

    Колленхима

    Оболочки живых клеток колленхимы утолщаются по уголком или по параллельным оболочкам. Такая ткань встречается в молодых стеблях и листьях.

    Склеренхима

    Склеренхима образовано мертвыми вытянутыми клетками с равномерно утолщенными оболочками Такие клетки называются волокнами.

    Волокна часто располагаются рядом с проводящими элемента ми луба и древесины.

    Основные ткани растений

    Фотосинтезирующие и запасающие ткани объединяются в группу основных тканей.

    Фотосинтезирующая ткань (хлоренхима, ассимиляционная ткань)

    Фотосинтезирующая ткань находится в листьях и мо-лодых стеблях, она осуществляет фотосинтез.

    Запасающая ткань растений

    Часть орга-нических веществ, синтезированных в листьях, передвига-ется в стебель и корень и откладывается в запас в клетках запасающей ткани.

    Клетки некоторых растений для успеш-ного выживания в засушливых условиях запасают воду. Материал с сайта http://wiki-med.com

    Образовательные ткани

    Образовательные ткани состоят из клеток, которые спо-собны делиться в течение всей жизни растения. Клетки, по-явившиеся в результате деления клеток образовательной тка-ни, затем преобразуются в клетки других тканей растения.

    Клетки образовательной ткани мелкие, тонкостенные. Бла-годаря деятельности образовательной ткани растения растут в длину и толщину.

    что такие флоэма и ксилема?

    Поэтому клетки образовательной тка-ни залегают на верхушке растения и кончике корня, а так-же располагаются продольными тяжами или цилиндрами в теле растения.

    Межкле-точное вещество растений

    В состав растительных тканей входит также межкле-точное вещество. Оно скрепляет клетки друг с другом, за-щищает их, препятствует испарению воды.

    На этой странице материал по темам:

    • в каких клетках есть межклеточное вещество у растний

    • nrfym j,hfpjdfyyf vthndsvb rktnrfvb

    • растительная ткань в состав которой могут входить мертвые клетки

    • из чего состоит межклеточное вещество растений

    • ubcnjkjubxtcrfz cnhernehf nrfytq hfcntybq

    Вопросы к этой статье:

    • По каким признакам различаются ткани?

    • Какие функции выполняют покровные ткани?

      Механические?

    • Какие тка-ни состоят из мертвых клеток?

    Материал с сайта http://Wiki-Med.com

    Проводящие ткани выполняют функцию транспортировки по растению питательных веществ. Они образуют в теле растения непрерывную разветв-ленную систему, соединяющую все его органы. Ткань, по которой передви-гаются вода и растворенные в ней минеральные вещества, называется ксилемой.

    Транспорт продуктов ассимиляции осуществляет второй тип проводящей ткани — флоэма.

    Ксилема так же, как и флоэма, является сложной тканью и включает три типа клеток:

    • трахеальные элементы,
    • механические волокна,
    • клетки паренхимы.

    Трахеальные элементы (трахеиды, сосуды) — это мертвые клетки вытянутой формы с неравномерно утолщенными лигнифицированными оболочками, пронизанными порами.

    Одревеснение оболочек происходило постепенно и способствовало укреплению стенок водопроводящих элементов. У примитивных организмов на тонкостенных оболочках сначала появлялись кольчатые, затем спиральные утолщения и возникали кольчатые и спиральные трахеальные элементы.

    В процессе эволюции одревеснение распространилось почти на всю оболочку, но в ней сохранились тонкостенные участки (поры), имеющие округлую или продолговатую форму.

    Так возникли точечные и лестничные трахеальные элементы, являющиеся разновидностями порового типа утолщения. Трахеиды являются основными водопроводящими элементами плаунов, хвощей, папоротников, голосеменных растений. Первичная клеточная оболочка на клеточных оболочках у них не нарушена; поэтому передвижение воды осуществляется путем фильтрации через поры.

    Сосуды характерны для покрытосеменных растений.

    Членики сосудов располагаются один под другим, образуя длинную полую трубку.

    Флоэма — это что? Функции, строение флоэмы, отличие от ксилемы

    Основное отличие сосудов от трахеид состоит в том, что их поперечная перегородка имеет сквозные отверстия (перфорации), вследствие чего значительно уве-личивается скорость передвижения воды.

    Членики сосудов возникают из живых клеток, которые имеют тонкие оболочки и растут в длину и ширину.

    Затем начинает откладываться вторичная оболочка (не откладывается в местах образования пор и перфораций. Поперечные стенки члеников сосудов в местах перфораций растворяются, начинается проведение воды).

    Сосуды являются важнейшим эволюционным приобретением растений.

    Они начали появляться в независимых эволюционных группах (у селягинеллы, орляка, эфедры) и окончательно закрепились у покрытосеменных, явившись важным фактором их процветания и приспособления к сухопутным условиям.

    Скорость передвижения воды по сосудам у некоторых высоких деревьев может достигать 8 м/ч (в среднем — 1 м/ч).

    Древесные волокна (волокна либриформа) выполняют опорную и защитную функции для трахеальных элементов и паренхимы.

    Они эволюционно возникли из трахеид, их преобразование шло в направлении потери проводящей функции, преобразования окаймленных пор в простые и повы-шения механической прочности.

    Древесинная паренхима часто окружает трахеальные элементы.

    Она ре-гулирует поступление и скорость движения растворов и запасает питательные вещества. Собранные в горизонтальные полосы участки паренхимных клеток образуют так называемые древесные лучи, передающие растворы в радиальном направлении.

    Рассеянная среди трахеальных элементов парен-хима, в виде вертикальных тяжей тянущаяся вдоль осевых органов, называется древесиной или тяжевой. Клетки паренхимы могут образовывать выросты в полость сосудов — тиллы.

    Тиллообразование усиливает механическую прочность центральной части стволов деревьев.

    По происхождению и заложению различают первичную и вторичную ксилемы.

    Первичная возникает из прокамбия. В ней выделяют:

    • протоксилему,
    • метаксилему (появляющуюся позже).

    Первичная часто состоит из трахеальных элементов примитивного строения (с кольчатым, спиральным утолще-нием клеточных оболочек). Вторичная образуется из камбия и называется древесиной.

    Формирование элементов в первичной ксилеме из прокамбия может идти тремя путями:

    1.центростремительно (первые элементы протоксилемы образуются на периферии, а метаксилема — в центре).

    Этот тип образования первичной кси-лемы называется экзархным;

    2.центробежно (вычленение клеток ксилемы из прокамбия идет от центра к периферии). В этом случае выделяют две его модификации:

    • центрархный тип (прокамбий расположен в виде одного пучка в центре и откладывает проводящие элементы наружу);
    • эндархный (прокамбий расположен в виде колечка).

    3.мезархный (первые элементы ксилемы закладываются в центральной части прокамбиального тяжа, а последующее появление других элементов идет и к центру, и к периферии).

    Социальные кнопки для Joomla

    Строение проводящих тканей

    Этот тип относится к сложным тканям, состоит из по-разному дифференцированных клеток. Кроме собственно проводящих элементов, в ткани присутствуют механические, выделительные и запасающие элементы. Проводящие ткани объединяют все органы растения в единую систему. Выделяют два типа проводящих тканей: ксилему и флоэму (греч.xylon – дерево; phloios – кора, лыко).

    Они имеют как структурные, так и функциональные различия.

    Проводящие элементы ксилемы образованы мертвыми клетками. По ним осуществляется дальний транспорт воды и растворённых в ней веществ от корня к листьям. Проводящие элементы флоэмы сохраняют живой протопласт. По ним осуществляется дальний транспорт от фотосинтезирующих листьев к корню.

    Проводящие ткани. А – ксилема; Б — флоэма

    1 – сосуды ксилемы; 2 – трахеиды; 3 – клетки древесной паренхимы; 4 – поры; 5 — ситовидные трубки; 6 – клетки – спутницы; 7 – ситовидные поля; 8 – клетки лубяной паренхимы.

    Обычно ксилема и флоэма располагаются в теле растения в определённом порядке, образуя слои или проводящие пучки .

    В зависимости от строения различают несколько типов проводящих пучков, которые характерны для определённых групп растений. В коллатеральном открытом пучке между ксилемой и флоэмой находится камбий, обеспечивающий вторичный рост.

    В биколлатеральном открытом пучке флоэма располагается относительно ксилемы с двух сторон. Закрытые пучки не содержат камбия, а отсюда к вторичному утолщению не способны. Можно встретить ещё два типа концентрических пучков, где или флоэма окружает ксилему, или ксилема – флоэму.

    Ксилема (древесина). Развитие ксилемы у высших растений связано с обеспечением водного обмена. Так как чрез эпидерму постоянно выводится вода, такое же количество влаги должно поглощаться растением и добавляться к органам, которые осуществляют транспирацию.

    Следует учитывать, что наличие живого протопласта в проводящих воду клетках сильно замедляло бы транспорт, мёртвые клетки здесь оказываются более функциональными. Однако мёртвая клетка не обладает тургесцентностью , поэтому механическими свойствами должна обладать оболочка.

    Примечание: тургесценция – состояния растительных клеток, тканей и органов, при которых они становятся упругими вследствие давления содержимого клеток на их эластичные оболочки. Действительно, проводящие элементы ксилемы состоят их вытянутых вдоль оси органа мертвых клеток с толстыми одревесневшими оболочками.

    Первоначально ксилема образуется из первичной меристемы — прокамбия, расположенного на верхушках осевых органов.

    Вначале дифференцируется протоксилема, затем метаксилема. Известно три типа формирования ксилемы. При экзархном типе элементы протоксилемы сначала появляются на периферии пучка прокамбия, затем в центре возникают элементы метаксилемы.

    Если процесс идёт в противоположном направлении (т.е. от центра к периферии), то это эндархный тип. При мезархном типе ксилема закладывается в центре прокамбиального пучка, после чего откладывается как по направлению к центру, так и к периферии.

    Для корня характерен экзархный тип закладки ксилемы, для стеблей – эндархный.

    У низкоорганизованных растений способы формирования ксилемы очень разнообразны и могут служить систематическими характеристиками.

    У некоторых растений (например, однодольных) все клетки прокамбия дифференцируются в проводящие ткани, которые не способны к вторичному утолщению. У других же форм (например, древесных) между ксилемой и флоэмой остаются латеральные меристемы (камбий).

    Эти клетки способны делиться, обновляя ксилему и флоэму.

    Такой процесс называется вторичным ростом. У многих, произрастающих в сравнительно стабильных климатических условиях, растений, рост идёт постоянно. У форм, приспособленных к сезонным изменениям климата, — периодически. В результате этого образуются хорошо выраженные годовые кольца прироста.

    Основные этапы дифференциации клеток прокамбия. Её клетки с тонкими оболочками, не препятствующими их растяжению при росте органа. Затем протопласт начинает откладывать вторичную оболочку.

    Но этот процесс имеет выраженные особенности. Вторичная оболочка откладывается не сплошным слоем, что не позволило бы клетке растягиваться, а в виде колец или по спирали. Удлинение клетки при этом не затруднено.

    У молодых клеток кольца или витки спирали расположены близко друг к другу. У зрелых клеток расходятся в результате растяжения клетки. Кольчатые и спиральные утолщения оболочки росту не препятствуют, однако механически они уступают оболочкам, где вторичное утолщение образует сплошной слой. Поэтому после прекращения роста в ксилеме формируются элементы со сплошной одревесневшей оболочкой ( метаксилемой ). Следует отметить, что вторичное утолщение здесь не кольчатое или спиральное, а точечное, лестничное, сетчатое.

    Её клетки растягиваться, не способны и в течение нескольких часов отмирают. Этот процесс у расположенных поблизости клеток происходит скоординировано. В цитоплазме появляется большое количество лизосом. Затем распадаются, а находящиеся в них ферменты разрушают протопласт. При разрушении поперечных стенок расположенные цепочкой друг над другом клетки образуют полый сосуд. Большинство покрытосеменных растений и некоторых папоротникообразных обладают сосудами.

    Проводящую клетку не образующую сквозных перфораций в своей стенке, называют трахеидой. Передвижение воды по трахеидам идёт с меньшей скоростью, чем по сосудам.

    Дело в том, что у трахеидов нигде не прерывается первичная оболочка. Между собой трахеиды сообщатся посредством пор. Следует уточнить, что у растений пора представляет собой лишь углубление во вторичной оболочке до первичной оболочки и никаких сквозных перфораций между трахеидами не имеется.

    Чаще всего встречаются окаймлённые поры.

    У них канал, обращённый в полость клетки, образует расширение – камеру поры. Поры большинства хвойных растений на первичной оболочке имеют утолщение – торус, который представляет собой своеобразный клапан и способен регулировать интенсивность транспорта воды. Смещаясь, торус перекрывает ток воды через пору, но после этого вернуться в прежнее положение он уже не может, совершая одноразовое действие.

    Поры бывают более или менее округлыми, вытянутыми перпендикулярно вытянутой оси (группа этих пор напоминает лестницу, поэтому такую пористость называют лестничной).

    Через поры транспорт осуществляется как в продольном, так и в поперечном направлении. Поры присутствуют не только у трахеид, но и отдельных клеток сосудов, которые образуют сосуд.

    С точки зрения эволюционной теории трахеиды представляют собой первую и основную структуру, осуществляющую проведение воды в теле высших растений.

    Считают, что сосуды возникли из трахеид вследствие лизиса поперечных стенок между ними. Большинство папоротникообразных и голосеменных сосудов не имеют. Передвижение воды у них происходит посредством трахеид.

    В процессе эволюционного развития сосуды возникали у разных групп растений неоднократно, но наиболее важное функциональное значение они приобрели у покрытосеменных, у которых они имеются наряду с трахеидами.

    Считают, что обладание более совершенным механизмом транспорта помогло им не только выжить, но и достигнуть значительного разнообразия форм.

    Ксилема является сложной тканью, кроме водопроводящих элементов в ней содержатся и другие. Механические функции выполняют волокна либриформа ( лат. liber – луб, forma – форма). Присутствие дополнительных механических структур важно, так как, несмотря на утолщения, стенки водопроводящих элементов всё же слишком тонки.

    Они не способны самостоятельно удерживать большую массу многолетнего растения. Волокна развивались из трахеид. Для них характерны меньшие размеры, одревесневшие (лигнифицированные) оболочки и узкие полости. На стенке можно обнаружить, лишенные окаймления поры. Эти волокна проводить воду не могут, основная их функция опорная.

    В ксилеме имеются и живые клетки. Их масса может достигать 25% от общего объема древесины.

    Так как эти клетки имеют округлую форму, то их называют паренхимой древесины. В теле растения паренхима располагается двумя способами. В первом случае клетки располагаются в виде вертикальных тяжей – это тяжевая паренхима .

    В другом случае паренхима образует горизонтальные лучи. Они называются сердцевинными лучами , так как соединяют сердцевину и кору. Сердцевина выполняет ряд функций, в том числе и запасание веществ.

    Флоэма (луб). Это сложная ткань, так как образована разнотипными клетками.

    Основные клетки проводящие, называются ситовидными элементами . Проводящие элементы ксилемы образованы мёртвыми клетками, а у флоэмы они в течение периода функционирования сохраняют живой, хотя и сильно изменённый протопласт.

    По флоэме происходит отток пластических веществ от фотосинтезирующих органов. Способностью проводить органические вещества обладают все живые клетки растений.

    А отсюда, если ксилему можно обнаружить только у высших растений, то транспорт органических веществ между клетками осуществляется и у низших растений.

    Ксилема и флоэма развиваются из апикальных меристем. На первом этапе в прокамбиальном тяже формируется протофлоэма. По мере роста окружающих тканей она растягивается, и, когда рост завершается, вместо протофлоэмы формируется метафлоэма.

    У различных групп высших растений можно встретить два типа ситовидных элементов.

    У покрытосеменных ситовидные элементы называются ситовидными трубками. Они сообщаются между собой через ситовидные пластинки.

    В зрелых клетках ядра отсутствуют. Однако рядом с ситовидной трубкой располагается клетка-спутница , образующаяся вместе с ситовидной трубкой в результате митотического деления общей материнской клетки. Клетка-спутница имеет более плотную цитоплазму с большим количеством активных митохондрий, а также полноценно функционирующее ядро, огромное количество плазмодесм (в десять раз больше, чем у других клеток). Клетки-спутницы оказывают воздействие на функциональную активность безъядерных ситовидных клеток трубок.

    Структура зрелых ситовидных клеток имеет некоторые особенности.

    Отсутствует вакуоль, поэтому цитоплазма сильно разжижается. Может отсутствовать (у покрытосеменных растений) или находиться в сморщенном функционально малоактивном состоянии ядро. Рибосомы и комплекс Гольджи также отсутствуют, но хорошо развит эндоплазматический ретикулум, который не только пронизывает цитоплазму, но и переходит в соседние клетки через поры ситовидных полей. Хорошо развитые митохондрии и пластиды встречаются в изобилии.

    Между клетками транспорт веществ идет через отверстия, расположенные на клеточных оболочках.

    Такие отверстия называются порами, но в отличие от пор трахеид, являются сквозными. Предполагают, что они представляют собой сильно расширенные плазмодесмы, на стенках, которых откладывается полисахарид каллоза.

    Поры располагаются группами, образуя ситовидные поля . У примитивных форм ситовидные поля беспорядочно рассеяны по всей поверхности оболочки, у более совершенных покрытосеменных растений располагаются на примыкающих друг к другу концах соседних клеток, образуя ситовидную пластинку . Если на ней находится одно ситовидное поле, её называют простой, если несколько – сложной.

    Скорость передвижения растворов по ситовидным элементам составляет до 150см ∕ час.

    Это в тысячу раз превышает скорость свободной диффузии. Вероятно, имеет место активный транспорт, а многочисленные митохондрии ситовидных элементов и клеток-спутниц поставляют для этого необходимую АТФ.

    Срок деятельности ситовидных элементов флоэмы зависит от наличия латеральных меристем.

    Если они имеются, то ситовидные элементы работают в течение всей жизни растения.

    Кроме ситовидных элементов и клеток-спутниц, во флоэме присутствуют лубяные волокна, склереиды и паренхима.

    Ксилема (древесина) растений

    По ксилеме от корня к листьям передвигаются вода и растворенные в ней минеральные вещества. Первичная и вторичная ксилемы содержат клетки одних и тех же типов. Однако первичная ксилема не имеет сердцевинных лучей, отличаясь этим от вторичной.

    В состав ксилемы входят морфологически различные элементы, осуществляющие функции как проведения, так и хранения запасных веществ, а также чисто опорные функции.

    Дальний транспорт осуществляется по трахеальным элементам ксилемы: трахеидам и сосудам, ближний — по паренхимным элементам.

    Опорные, а иногда и запасающие функции выполняют часть трахеид и волокна механической ткани либриформа, также входящие в состав ксилемы.

    Трахеиды в зрелом состоянии — это мертвые прозенхимные клетки, суженные на концах и лишенные протопласта.

    Длина трахеид в среднем составляет 1-4 мм, поперечник же не превышает десятых и даже сотых долей миллиметра. Стенки трахеид одревесневают, утолщаются и несут простые или окаймленные поры, через которые происходит фильтрация растворов.

    Большая часть окаймленных пор находится около окончаний клеток, т.е. там, где растворы просачиваются из одной трахеиды в другую. Трахеиды есть у спорофитов всех высших растений, а у большинства хвощевидных, плауновидных, папоротниковидных и голосеменных они являются единственными проводящими элементами ксилемы.

    Сосуды — это полые трубки, состоящие из отдельных члеников, располагающихся друг над другом. Между расположенными один над другим члениками одного и того же сосуда имеются разного типа сквозные отверстия — перфорации.

    Благодаря перфорациям вдоль всего сосуда свободно осуществляется ток жидкости. Эволюционно сосуды, по-видимому, произошли из трахеид путем разрушения замыкающих пленок пор и последующего их слияния в одну или несколько перфораций. Концы трахеид, первоначально сильно скошенные, заняли горизонтальное положение, а сами трахеиды стали короче и превратились в членики сосудов (рис.

    Сосуды появились независимо в разных линиях эволюции наземных растений. Однако наибольшего развития они достигают у покрытосеменных, где являются главнейшими водопроводящими элементами ксилемы.

    Возникновение сосудов — важное свидетельство эволюционного прогресса этого таксона, поскольку они существенно облегчают транспирационный ток вдоль тела растения.

    Помимо первичной оболочки, сосуды и трахеиды в большинстве случаев имеют вторичные утолщения. В самых молодых трахеальных элементах вторичная оболочка может иметь форму колец, не связанных друг с другом (кольчатые трахеиды и сосуды).

    Позднее появляются трахеальные элементы со спиральными утолщениями. Затем следуют сосуды и трахеиды с утолщениями, которые могут быть охарактеризованы как спирали, витки которых связаны между собой (лестничные утолщения). В конечном итоге вторичная оболочка сливается в более или менее сплошной цилиндр, формирующийся внутрь от первичной оболочки. Этот цилиндр прерывается в отдельных участках порами.

    Сосуды и трахеиды с относительно небольшими округлыми участками первичной клеточной оболочки, не прикрытыми изнутри вторичной оболочкой, нередко называют пористыми.

    В тех случаях, когда поры во вторичной оболочке образуют подобие сетки или лестницы, говорят о сетчатых или лестничных трахеальных элементах (лестничные сосуды и трахеиды).

    Вторичная, а иногда и первичная оболочка, как правило, лигнифицируются, т.е. пропитываются лигнином, это придает дополнительную прочность, но ограничивает возможности дальнейшего их роста в длину.

    Трахеальные элементы, т.е. трахеиды и сосуды, распределяются в ксилеме различным образом. Иногда на поперечном срезе они образуют хорошо выраженные кольца (кольцесосудистая древесина).

    В других случаях сосуды рассеяны более или менее равномерно по всей массе ксилемы (рассеяннососудистая древесина).

    Особенности распределения трахеальных элементов в ксилеме используют при определении древесин различных пород деревьев.

    Помимо трахеальных элементов, ксилема включает лучевые элементы, т.е. клетки, образующие сердцевинные лучи (рис.

    46), сформированные чаще всего тонкостенными паренхимными клетками (лучевая паренхима). Реже в лучах хвойных встречаются лучевые трахеиды. По сердцевинным лучам осуществляется ближний транспорт веществ в горизонтальном направлении. В ксилеме покрытосеменных помимо проводящих элементов содержатся также тонкостенные неодревесневшие живые паренхимные клетки, называемые древесинной паренхимой.

    По ним наряду с сердцевинными лучами отчасти осуществляется ближний транспорт. Кроме того, древесинная паренхима служит местом хранения запасных веществ. Элементы сердцевинных лучей и древесинной паренхимы, подобно трахеальным элементам, возникают из камбия.

    Ссылки:

  • КСИЛЕМА - комплекс тканей в растениях, служащий для передвижения воды и растворённых в ней минер, солей и др. н-н и выполняющий также механич. и запасающие функции. Образуется из прокамбия или камбия …

    Сельско-хозяйственный энциклопедический словарь

  • ксилема - Синонимы: древесина комплекс проводящих, механических и основных тканей, обеспечивающих транспорт воды с растворенными минеральными веществами от корневой в побеговую систему растений…

    Анатомия и морфология растений

  • КСИЛЕМА - проводящая ТКАНЬ растений, которая переносит воду и растворы минеральных солей от корней ко всем органам растения и обеспечивает ему опору. Наиболее важные клетки, длинные и тонкие, называются сосудами ксилемы…

    Научно-технический энциклопедический словарь

  • КСИЛЕМА - см.

    древесина…

    Словарь ботанических терминов

  • КСИЛЕМА - ткань высш. р-ний, служащая для проведения воды и р-ров минер.

    солей от корней к листьям и др. органам. Состоит из проводящих элементов, механич. и паренхимных клеток…

    Естествознание. Энциклопедический словарь

  • КСИЛЕМА - син. термина древесина…

    Геологическая энциклопедия

  • Большой энциклопедический политехнический словарь

  • Ксилема - см. Древесина…

    Энциклопедический словарь Брокгауза и Евфрона

  • Ксилема - ткань наземных растений, служащая для проведения воды и минеральных солей от корней вверх по растению.

    К. располагается сплошным кольцом или в так называемых проводящих пучках…

    Большая Советская энциклопедия

  • КСИЛЕМА - то же, что древесина…

    Современная энциклопедия

  • КСИЛЕМА - ткань высших растений, служащая для проведения воды и растворов минеральных солей от корней к листьям и другим органам.

    Состоит из проводящих элементов, механических и паренхимных клеток…

    Большой энциклопедический словарь

  • ксилема - ; мн. ксиле/мы, Р….

    Орфографический словарь русского языка

  • ксилема - ксил"…

    Русский орфографический словарь

  • КСИЛЕМА - Древесина…

    Словарь иностранных слов русского языка

  • ксилема - …

    Формы слова

  • ксилема - …

    Словарь синонимов

  • КАТЕГОРИИ

    ПОПУЛЯРНЫЕ СТАТЬИ

    © 2024 «api-clinic.ru» — Центр естественной медицины