Какое излучение опасно. Основные свойства, виды и источники радиоактивных излучений

Задача (для разогрева):

Расскажу я вам, дружочки,
Как выращивать грибочки:
Нужно в поле утром рано
Сдвинуть два куска урана...

Вопрос: Какова должна быть общая масса кусков урана, чтобы произошел ядерный взрыв?

Ответ (для того, чтобы увидеть ответ - нужно выделить текст) : Для урана-235 критическая масса составляет примерно 500 кг., если взять шарик такой массы, то диаметр такого шара будет равен 17 см.

Радиация, что это?

Радиация (в переводе с английского "radiation") - это излучение, которое применяется не только в отношении радиоактивности, но и для ряда других физических явлений, например: солнечная радиация, тепловая радиация и др. Таким образом, в отношении радиоактивности необходимо использовать принятое МКРЗ (Международной комиссией по радиационной защите) и правилами радиационной безопасности словосочетание "ионизирующее излучение".

Ионизирующее излучение, что это?

Ионизирующее излучение - излучение (электромагнитное, корпускулярное), которое вызывает ионизацию (образование ионов обоих знаков) вещества (среды). Вероятность и количество образованных пар ионов зависит от энергии ионизирующего излучения.

Радиоактивность, что это?

Радиоактивность – излучение возбужденных ядер или самопроизвольное превращение неустойчивых атомных ядер в ядра других элементов, сопровождающееся испусканием частиц или γ -кванта (ов). Трансформация обычных нейтральных атомов в возбужденное состояние происходит под воздействием внешней энергии различного рода. Далее возбужденное ядро стремится снять избыточную энергию путем излучения (вылет альфа-частицы, электронов, протонов, гамма-квантов (фотонов), нейтронов), до достижения стабильного состояния. Многие тяжелые ядра (трансурановый ряд в таблице Менделеева - торий, уран, нептуний, плутоний и др.) изначально находятся в нестабильном состоянии. Они способны спонтанно распадаться. Этот процесс также сопровождается излучением. Такие ядра называются естественными радионуклидами.

На этой анимации наглядно показано явление радиоактивности.

Камера Вильсона (пластиковый бокс охлажденный до -30 °C) наполнена паром изопропилового спирта. Жюльен Саймонпоместил в нее 0,3-cm³ кусок радиоактивного урана (минерала уранинит). Минерал излучает α-частицы и бета-частицы, так как он содержит U-235 и U-238. На пути движения α и бета частиц находятся молекулы изопропилового спирта.

Поскольку частицы заряжены (альфа – положительно, бета – отрицательно), то они могут отрывать электрон от молекулы спирта (альфа частица) или добавить электроны молекулам спирта бета частицы). Это, в свою очередь, дает молекулам заряд, который затем привлекает незаряженные молекулы вокруг них. Когда молекулы собираются в кучу, то получаются заметные белые облака, что прекрасно видно на анимации. Так мы легко можем проследить пути выбрасываемых частиц.

α-частицы создают прямые, густые облака, в то время как бета-частицы создают длинные.

Изотопы, что это?

Изотопы – это разнообразие атомов одного и того же химического элемента, располагающие разными массовыми числами, но включающие одинаковый электрический заряд атомных ядер и, следовательно, занимающие в периодической системе элементов Д.И. Менделеева единое место. Например: 131 55 Cs, 134 m 55 Cs, 134 55 Cs, 135 55 Cs, 136 55 Cs, 137 55 Cs. Т.е. заряд в большей степени определяет химические свойства элемента.

Существуют изотопы устойчивые (стабильные) и неустойчивые (радиоактивные изотопы) – спонтанно распадающиеся. Известно около 250 стабильных и около 50 естественных радиоактивных изотопов. Примером устойчивого изотопа может служить 206 Pb, являющийся конечным продуктом распада естественного радионуклида 238 U, который в свою очередь появился на нашей Земле в начале образования мантии и не связан с техногенным загрязнением.

Какие виды ионизирующего излучения существуют?

Основными видами ионизирующего излучения, с которыми чаще всего приходится сталкиваться, являются:

  • альфа-излучение;
  • бета-излучение;
  • гамма-излучение;
  • рентгеновское излучение.

Конечно, имеются и другие виды излучения (нейтронное, позитронное и др.), но с ними мы встречаемся в повседневной жизни заметно реже. Каждый вид излучения обладает своими ядерно-физическими характеристиками и как следствие – различным биологическим воздействии на организм человека. Радиоактивный распад может сопровождаться одним из видов излучения или сразу несколькими.

Источники радиоактивности бывают природными или искусственными. Природные источники ионизирующего излучения - это радиоактивные элементы, находящиеся в земной коре и образующие природный радиационный фон вместе с космическим излучением.

Искусственные источники радиоактивности, как правило, образуются в ядерных реакторах или ускорителях на основе ядерных реакций. Источниками искусственных ионизирующих излучений могут быть и разнообразные электровакуумные физические приборы, ускорители заряженных частиц и др. Например: кинескоп телевизора, рентгеновская трубка, кенотрон и др.

Альфа-излучение (α -излучение) - корпускулярное ионизирующее излучение, состоящее из альфа-частиц (ядер гелия). Образуются при радиоактивном распаде и ядерных превращениях. Ядра гелия обладают достаточно большими массой и энергией до 10 МэВ (Мегаэлектрон-Вольт). 1 эВ = 1,6∙10 -19 Дж. Имея несущественный пробег в воздухе (до 50 см) представляют высокую опасность для биологических тканей при попадании на кожу, слизистые оболочки глаз и дыхательных путей, при попадании внутрь организма в виде пыли или газа (радон-220 и 222). Токсичность альфа-излучения, обуславливается колоссально высокой плотностью ионизации из-за высокой энергии и массы.

Бета-излучение (β -излучение) - корпускулярное электронное или позитронное ионизирующее излучение соответствующего знака с непрерывным энергетическим спектром. Характеризуется максимальной энергией спектра Е β max , или средней энергией спектра. Пробег электронов (бета-частиц) в воздухе достигает нескольких метров (в зависимости от энергии), в биологических тканях пробег бета-частицы составляет несколько сантиметров. Бета-излучение, как и альфа-излучение, представляет опасность при контактном облучении (поверхностном загрязнении), например, при попадании внутрь организма, на слизистые оболочки и кожные покровы.

Гамма-излучение (γ –излучение или гамма кванты) – коротковолновое электромагнитное (фотонное) излучение с длиной волны

Рентгеновское излучение - по своим физическим свойствам подобно гамма-излучению, но имеющее ряд особенностей. Оно появляется в рентгеновской трубке вследствие резкой остановки электронов на керамической мишени-аноде (то место, куда ударяются электроны, изготавливают, как правило, из меди или молибдена) после ускорения в трубке (непрерывный спектр - тормозное излучение) и при выбивании электронов из внутренних электронных оболочек атома мишени (линейчатый спектр). Энергия рентгеновского излучения небольшая – от долей единиц эВ до 250 кэВ. Рентгеновское излучение можно получить, используя ускорители заряженных частиц, - синхротронное излучение с непрерывным спектром, имеющим верхнюю границу.

Прохождение радиации и ионизирующих излучений через препятствия:

Чувствительность человеческого организма к воздействию радиации и ионизирующих излучений на него:

Что такое источник излучения?

Источник ионизирующего излучения (ИИИ) - объект, который включает в себя радиоактивное вещество или техническое устройство, которое создает или в определенных случаях способно создавать ионизирующее излучение. Различают закрытые и открытые источники излучения.

Что такое радионуклиды?

Радионуклиды – ядра, подверженные спонтанному радиоактивному распаду.

Что такое период полураспада?

Период полураспада – период времени, в течение которого число ядер данного радионуклида в результате радиоактивного распада снижается в два раза. Эта величина используется в законе радиоактивного распада.

В каких единицах измеряется радиоактивность?

Активность радионуклида в соответствии с системой измерений СИ измеряется в Беккерелях (Бк) – по имени французского физика, открывшего радиоактивность в 1896г.), Анри Беккереля. Один Бк равен 1 ядерному превращению в секунду. Мощность радиоактивного источника измеряется соответственно в Бк/с. Отношение активности радионуклида в образце к массе образца называется удельная активность радионуклида и измеряется в Бк/кг (л).

В каких единицах измеряется ионизирующее излучение (рентгеновское и гамма) ?

Что же мы видим на дисплее современных дозиметров, измеряющих ИИ? МКРЗ предложила для оценки облучения человека измерять дозу на глубине d, равной 10 мм. Измеряемая величина дозы на этой глубине получила название амбиентный эквивалент дозы, измеряемая в зивертах (Зв). Фактически это расчетная величина, где поглощенная доза умножена на взвешивающий коэффициент для данного вида излучения и коэффициент, характеризующий чувствительность различных органов и тканей к конкретному виду излучения.

Эквивалентная доза (или часто употребляемое понятие «доза») – равна произведению поглощенной дозы на коэффициент качества воздействия ионизирующего излучения (например: коэффициент качества воздействия гамма-излучения составляет 1, а альфа-излучения – 20).

Единица измерения эквивалентной дозы – бэр (биологический эквивалент рентгена) и его дольные единицы: миллибэр (мбэр) микробэр (мкбэр) и т.д., 1 бэр = 0,01 Дж/кг. Единица измерения эквивалентной дозы в системе СИ – зиверт, Зв,

1 Зв = 1 Дж/кг = 100 бэр.

1 мбэр = 1*10 -3 бэр; 1 мкбэр = 1*10 -6 бэр;

Поглощенная доза - количество энергии ионизирующего излучения, которое поглощено в элементарном объеме, отнесенной к массе вещества в этом объеме.

Единица поглощенной дозы – рад, 1 рад = 0,01 Дж/кг.

Единица поглощенной дозы в системе СИ – грей, Гр, 1 Гр=100 рад=1 Дж/кг

Мощность эквивалентной дозы (или мощность дозы) – это отношение эквивалентной дозы на промежуток времени ее измерения (экспозиции), единица измерения бэр/час, Зв/час, мкЗв/с и т.д.

В каких единицах измеряется альфа- и бета-излучение?

Количество альфа- и бета-излучения определяется как плотности потока частиц с единицы площади, в единицу времени - a-частиц*мин/см 2 , β-частиц*мин/см 2 .

Что вокруг нас радиоактивно?

Почти все что нас окружает, даже сам человек. Естественная радиоактивность в какой-то мере является натуральной средой обитания человека, если она не превышает естественных уровней. На планете есть участки с повышенным относительно среднего уровня радиационного фона. Однако в большинстве случаев, каких-либо весомых отклонений в состоянии здоровья населения при этом не наблюдается, так как эта территория является их естественной средой обитания. Примером такого участка территории является, например, штат Керала в Индии.

Для истинной оценки, возникающих иногда в печати пугающих цифр, следует отличать:

  • естественную, природную радиоактивность;
  • техногенную, т.е. изменение радиоактивности среды обитания под влиянием человека (добыча ископаемых, выбросы и сбросы промышленных предприятий, аварийные ситуации и много другое).

Как правило, устранить элементы природной радиоактивности почти невозможно. Как можно избавиться от 40 К, 226 Ra, 232 Th, 238 U,которые повсюду распространены в земной коре и находятся практически во всем, что нас окружает, и даже в нас самих?

Из всех природных радионуклидов наибольшую опасность для здоровья человека представляют продукты распада природного урана (U-238) - радий (Ra-226) и радиоактивный газ радон (Ra-222). Главными «поставщиками» радия-226 в окружающую природную среду являются предприятия, занимающиеся добычей и переработкой различных ископаемых материалов: добыча и переработка урановых руд; нефти и газа; угольная промышленность; производство строительных материалов; предприятия энергетической промышленности и др.

Радий-226 хорошо подвержен выщелачиванию из минералов содержащих уран. Этим его свойством объясняется наличие крупных количеств радия в некоторых видах подземных вод (некоторые из них, обогащенные газом радоном применяются в медицинской практике), в шахтных водах. Диапазон содержания радия в подземных водах варьируется от единиц до десятков тысяч Бк/л. Содержание радия в поверхностных природных водах значительно ниже и может составлять от 0.001 до 1-2 Бк/л.

Значительной составляющей природной радиоактивности является продукт распада радия-226 - радон-222.

Радон – инертный, радиоактивный газ, без цвета и запаха с периодом полураспада 3.82 дня. Альфа-излучатель. Он в 7.5 раза тяжелее воздуха, поэтому большей частью концентрируется в погребах, подвалах, цокольных этажах зданий, в шахтных горных выработках, и т.д.

Считается, что до 70% действия радиации на население связано с радоном в жилых зданиях.

Главным источником поступления радона в жилые здания являются (по мере возрастания значимости):

  • водопроводная вода и бытовой газ;
  • строительные материалы (щебень, гранит, мрамор, глина, шлаки, и др.);
  • почва под зданиями.

Более подробно о радоне и прибораз для его измерения: РАДИОМЕТРЫ РАДОНА И ТОРОНА .

Профессиональные радиометры радона стоят неподъемные деньги, для бытового использования - рекомендуем Вам обратить внимание на бытовой радиометр радона и торона производства Германия: Radon Scout Home .

Что такое "черные пески" и какую опасность они представляют?


«Черные пески» (цвет варьируется от светло-желтого до красно-бурого, коричневого, встречаются разновидности белого, зеленоватого оттенка и черные) представляют собой минерал монацит - безводный фосфат элементов ториевой группы, главным образом церия и лантана (Ce, La)PO 4 , которые заменяются торием. Монацит насчитывает до 50-60% окисей редкоземельных элементов: окиси иттрия Y 2 O 3 до 5%, окиси тория ThO 2 до 5-10%, иногда до 28%. Попадается в пегматитах, иногда в гранитах и гнейсах. При разрушении горных пород содержащих монацит, он собирается в россыпях, которые представляют собой крупные месторождения.

Россыпи монацитовых песков существующие на суше, как правило, не вносят особенного изменения в получившуюся радиационную обстановку. А вот месторождения монацита находящиеся у прибрежной полосы Азовского моря (в пределах Донецкой области), на Урале (Красноуфимск) и др. областях создают ряд проблем, связанных с возможностью облучения.

Например, из-за морского прибоя за осенне-весенний период на побережье, в следствии естественной флотации, набирается существенное количество "черного песка", характеризующегося высоким содержанием тория-232 (до 15-20 тыс. Бк/кг и более), который создает на локальных участках уровни гамма-излучения порядка 3,0 и более мкЗв/час. Естественно, отдыхать на таких участках небезопасно, поэтому ежегодно проводится сбор этого песка, выставляются предупреждающие знаки, закрываются некоторые участки побережья.

Средства измерения радиации и радиоактивности.


Для измерения уровней радиации и содержания радионуклидов в разных объектах применяются специальные средства измерения:

  • для измерения мощности экспозиционной дозы гамма излучения, рентгеновского излучения, плотности потока альфа и бета-излучения, нейтронов, применяются дозиметры и поисковые дозиметры-радиометры разных типов;
  • для определения вида радионуклида и его содержания в объектах окружающей среды применяются спектрометры ИИ, которые состоят из детектора излучения, анализатора и персонального компьютера с соответствующей программой для обработки спектра излучения.

В настоящее время присутствует большое количество дозиметров различного типа для решения различных задач радиационного контроля и имеющие широкие возможности.

Вот для примера дозиметры, которые чаще всего используются в профессиональной деятельности:

  1. Дозиметр-радиометр МКС-АТ1117М (поисковый дозиметр-радиометр) – профессиональный радиометр используется для поиска и выявления источников фотонного излучения. Имеет цифровой индикатор, возможность установки порога срабатывания звукового сигнализатора, что очень облегчает работу при обследовании территорий, проверки металлолома и др. Блок детектирования выносной. В качестве детектора применяется сцинтилляционный кристалл NaI. Дозиметр является универсальным решением различных задач, комплектуется десятком различных блоков детектирования с разными техническими характеристиками. Измерительные блоки позволяют измерять альфа, бета, гамма, рентгеновское и нейтронное излучения.

    Информация о блоках детектирования и их применению:

Наименование блока детектирования

Измеряемое излучение

Основная особенность (техническая характеристика)

Область применения

БД для альфа излучения

Диапазон измерения 3,4·10 -3 - 3,4·10 3 Бк·см -2

БД для измерения плотности потока альфа-частиц с поверхности

БД для бета излучения

Диапазон измерения 1 - 5·10 5 част./(мин·см 2)

БД для измерения плотности потока бета-частиц с поверхности

БД для гамма излучения

Чувствительность

350 имп·с -1 /мкЗв·ч -1

Диапазон измерения

0,03 - 300 мкЗв/ч

Оптимальный вариант по цене, качество, технические характеристики. Имеет широкое применение в области измерения гамма-излучения. Хороший поисковый блок детектирования для нахождения источников излучения.

БД для гамма излучения

Диапазон измерения 0,05 мкЗв/ч - 10 Зв/ч

Блок детектирования имеющий очень высокий верхний порог измерения гамма-излучения.

БД для гамма излучения

Диапазо измерения 1 мЗв/ч - 100 Зв/ч Чувствительность

900 имп·с -1 /мкЗв·ч -1

Дорогой блок детектирования, обладающий высоким диапазоном измерения и отличную чувствительность. Используется для нахождения источников излучения с сильным излучением.

БД для рентгеновского излучения

Диапазон энергии

5 - 160 кэВ

Блок детектирования для рентгеновского излучения. Широко применяется в медицине и установках работающих с выделением рентгеновского излучения маленькой энергии.

БД для нейтронного излучения

Диапазон измерения

0,1 - 10 4 нейтр/(с·см 2) Чувствительность 1,5 (имп·с -1)/(нейтрон·с -1 ·см -2)

БД для альфа, бета, гамма и рентгеновского излучения

Чувствительность

6,6 имп·с -1 /мкЗв·ч -1

Универсальный блок детектирования, который позволяет измерять альфа, бета, гамма и рентгеновское излучения. Обладает небольшой стоимостью и плохой чувствительностью. Нашел широкое примирение в области аттестация рабочих мест (АРМ), где в основном требуется проводить измерение локального объекта.

2. Дозиметр-радиометр ДКС-96 – предназначен для измерения гамма и рентгеновского излучения, альфа излучения, бета излучения, нейтронного излучения.

Во многом аналогичен дозиметру-радиометру .

  • измерение дозы и мощности амбиентного эквивалента дозы (далее дозы и мощности дозы) Н*(10) и Н*(10) непрерывного и импульсного рентгеновского и гамма-излучений;
  • измерение плотности потока альфа- и бета-излучений;
  • измерение дозы Н*(10) нейтронного излучения и мощности дозы Н*(10) нейтронного излучения;
  • измерение плотности потока гамма-излучения;
  • поиск, а так же локализация радиоактивных источников и источников загрязнений;
  • измерение плотности потока и мощности экспозиционной дозы гамма-излучения в жидких средах;
  • радиационный анализ местности с учетом географических координат, используя GPS;

Двухканальный сцинтилляционный бета-гамма-спектрометр предназначен для единовременного и раздельного определения:

  • удельной активности 137 Cs, 40 K и 90 Sr в пробах различной окружающей среды;
  • удельной эффективной активности естественных радионуклидов 40 K, 226 Ra, 232 Th в строительных материалах.

Позволяет обеспечивать экспресс-анализ стандартизованных проб плавок металла на наличие радиационного излучения и загрязнения.

9. Гамма-спектрометр на основе ОЧГ детектора Спектрометры на основе коаксиальных детекторов из ОЧГ (особо чистого германия) предназначены для регистрации гамма-излучения в диапазоне энергий от 40 кэВ до З МэВ.

    Спектрометр бета и гамма излучения МКС-АТ1315

    Спектрометр со свинцовой защитой NaI ПАК

    Портативный NaI спектрометр МКС-АТ6101

    Носимый ОЧГ спектрометр Эко ПАК

    Портативный ОЧГ спектрометр Эко ПАК

    Спектрометр NaI ПАК автомобильного исполнения

    Спектрометр MKS-AT6102

    Спектрометр Эко ПАК с электромашинным охлаждением

    Ручной ППД спектрометр Эко ПАК

Ознакомиться с другими средствами измерения для измерения ионизирующего излучения, Вы можете у нас на сайте:

  • при проведении дозиметрических измерений, если подразумевается их частое проведение с целью слежения за радиационной обстановкой, необходимо строго соблюдать геометрию и методику измерения;
  • для увеличения надежности дозиметрического контроля нужно проводить несколько измерений (но не менее 3-х), затем рассчитать среднее арифметическое;
  • при замерах фона дозиметра на местности выбирают участки, удаленные на 40 м от зданий и сооружений;
  • измерения на местности проводят на двух уровнях: на высоте 0.1 (поиск) и 1.0 м (измерение для протокола – при этом следует вращать датчик с целью определения максимального значения на дисплее) от поверхности грунта;
  • при измерении в жилых и общественных помещениях, измерения проводятся в на высоте 1.0 м от пола, желательно в пяти точках методом «конверта». На первый взгляд, трудно понять, что происходит на фотографии. Из-под пола словно вырос гигантский гриб, а призрачные люди в касках как будто работают рядом с ним...

    На первый взгляд, трудно понять, что происходит на фотографии. Из-под пола словно вырос гигантский гриб, а призрачные люди в касках как будто работают рядом с ним...

    Нечто необъяснимо жуткое в этой сцене, и тому есть причина. Вы видите крупнейшее скопление, вероятно, самого токсичного вещества, когда-либо созданного человеком. Это ядерная лава или кориум.

    В течение дней и недель после аварии на Чернобыльской атомной электростанции 26 апреля 1986 года просто зайти в помещение с такой же кучей радиоактивного материала - её мрачно прозвали "слоновья нога" - означало верную смерть через несколько минут. Даже десятилетие спустя, когда была сделана эта фотография, вероятно, из-за радиации фотоплёнка вела себя странно, что проявилось в характерной зернистой структуре. Человек на фотографии, Артур Корнеев, скорее всего, посещал это помещение чаще, чем кто-нибудь другой, так что подвергся, пожалуй, максимальной дозе радиации.

    Удивительно, но, по всей вероятности, он ещё жив. История, как США получили во владение уникальную фотографию человека в присутствии невероятно токсичного материала сама по себе окутана тайной - также как и причины, зачем кому-то понадобилось делать селфи рядом с горбом расплавленной радиоактивной лавы.

    Фотография впервые попала в Америку в конце 90-х, когда новое правительство получившей независимость Украины взяло под контроль ЧАЭС и открыло Чернобыльский центр по проблемам ядерной безопасности, радиоактивных отходов и радиоэкологии. Вскоре Чернобыльский центр пригласил другие страны к сотрудничеству в проектах ядерной безопасности. Министерство энергетики США распорядилось оказать помощь, направив соответствующий приказ в Pacific Northwest National Laboratories (PNNL) - многолюдный научно-исследовательский центр в Ричленде, шт. Вашингтон.

    В то время Тим Ледбеттер (Tim Ledbetter) являлся одним из новичков в ИТ-отделе PNNL, и ему поручили создать библиотеку цифровых фотографий для Проекта по ядерной безопасности Министерства энергетики, то есть для демонстрации фотографий американской публике (точнее, для той крохотной части публики, которая тогда имела доступ в интернет). Он попросил участников проекта сделать фотографии во время поездок в Украину, нанял фотографа-фрилансера, а также попросил материалы у украинских коллег в Чернобыльском центре. Среди сотен фотографий неуклюжих рукопожатий чиновников и людей в лабораторных халатах, однако, есть с десяток снимков с руинами внутри четвёртого энергоблока, где десятилетием раньше, 26 апреля 1986 года, во время испытания турбогенератора произошёл взрыв.

    Когда радиоактивный дым поднялся над станицей, отравляя окружающую землю, снизу сжижились стержни, расплавившись через стенки реактора и сформировав субстанцию под названием кориум.

    Когда радиоактивный дым поднялся над станицей, отравляя окружающую землю, снизу сжижились стержни, расплавившись через стенки реактора и сформировав субстанцию под названием кориум .

    Кориум формировался за пределами научно-исследовательских лабораторий минимум пять раз, говорит Митчелл Фармер (Mitchell Farmer), ведущий инженер-ядерщик в Аргоннской национальной лаборатории, ещё одном учреждении Министерства энергетики США в окрестностях Чикаго. Однажды кориум сформировался на реакторе Three Mile Island в Пенсильвании в 1979 году, однажды в Чернобыле и три раза при расплавлении реактора в Фукусиме в 2011 году. В своей лаборатории Фармер создал модифицированные версии кориума, чтобы лучше понять, как избежать подобных происшествий в будущем. Исследование субстанции показало, в частности, что полив водой после формирования кориума в реальности препятствует распаду некоторых элементов и образованию более опасных изотопов.

    Из пяти случаев формирования кориума только в Чернобыле ядерная лава смогла вырваться за пределы реактора. Без системы охлаждения радиоактивная масса ползла по энергоблоку в течение недели после аварии, вбирая в себя расплавленный бетон и песок, которые перемешивались с молекулами урана (топливо) и циркония (покрытие). Эта ядовитая лава текла вниз, в итоге расплавив пол здания. Когда инспекторы наконец проникли в энергоблок через несколько месяцев после аварии, они обнаружили 11-тонный трёхметровый оползень в углу коридора парораспределения внизу. Тогда его и назвали "слоновьей ногой". В течение последующих лет "слоновью ногу" охлаждали и дробили. Но даже сегодня её остатки всё ещё теплее окружающей среды на несколько градусов, поскольку распад радиоактивных элементов продолжается.

    Ледбеттер не может вспомнить, где конкретно он добыл эти фотографии. Он составил фотобиблиотеку почти 20 лет назад, и веб-сайт, где они размещаются, до сих пор в хорошей форме; только уменьшенные копии изображений потерялись. (Ледбеттер, всё ещё работающий в PNNL, был удивлён узнать, что фотографии до сих пор доступны в онлайне). Но он точно помнит, что никого не отправлял фотографировать "слоновью ногу", так что её, скорее всего, прислал кто-то из украинских коллег.

    Фотография начала распространяться по другим сайтам, а в 2013 году на неё наткнулся Кайл Хилл (Kyle Hill), когда писал статью о "слоновьей ноге" для журнала Nautilus. Он отследил её происхождение до лаборатории PNNL. На сайте было найдено давно потерянное описание фотографии: "Артур Корнеев, зам. директора объекта Укрытие, изучает ядерную лаву "слоновью ногу", Чернобыль. Фотограф: неизвестен. Осень 1996". Ледбеттер подтвердил, что описание соответствует фотографии.

    Артур Корнеев - инспектор из Казахстана, который занимался образованием сотрудников, рассказывая и защищая их от "слоновьей ноги" с момента её образования после взрыва на ЧАЭС в 1986 году, любитель мрачно пошутить. Скорее всего, последним с ним разговаривал репортёр NY Times в 2014 году в Славутиче - городе, специально построенном для эвакуированного персонала из Припяти (ЧАЭС).

    Вероятно, снимок сделан с более длинной выдержкой, чем другие фотографии, чтобы фотограф успел появиться в кадре, что объясняет эффект движения и то, почему наголовный фонарь выглядит как молния. Зернистость фотографии, вероятно, вызвана радиацией.

    Для Корнеева это конкретное посещение энергоблока было одним из нескольких сотен опасных походов к ядру с момента его первого дня работы в последующие дни после взрыва. Его первым заданием было выявлять топливные отложения и помогать замерять уровни радиации ("слоновья нога" изначально "светилась" более чем на 10 000 рентген в час, что убивает человека на расстоянии метра менее чем за две минуты). Вскоре после этого он возглавил операцию по очистке, когда с пути иногда приходилось убирать цельные куски ядерного топлива. Более 30 человек погибло от острой лучевой болезни во время очистки энергоблока. Несмотря на невероятную дозу полученного облучения, сам Корнеев продолжал возвращаться в спешно построенный бетонный саркофаг снова и снова, часто с журналистами, чтобы оградить их от опасности.

    В 2001 году он привёл репортёра Associated Press к ядру, где уровень радиации был 800 рентген в час. В 2009 году известный беллетрист Марсель Теру написал статью для Travel + Leisure о своём походе в саркофаг и о сумасшедшем провожатом без противогаза, который издевался над страхами Теру и говорил, что это "чистая психология". Хотя Теру именовал его как Виктора Корнеева, по всей вероятности человеком был Артур, поскольку он опускал такие же чёрные шутки через несколько лет с журналистом NY Times.

    Его нынешнее занятие неизвестно. Когда Times нашло Корнеева полтора года назад, он помогал в строительстве свода для саркофага - проекта стоимостью $1,5 млрд, который должен быть закончен в 2017 году. Планируется, что свод полностью закроет Убежище и предотвратит утечку изотопов. В свои 60 с чем-то лет Корнеев выглядел болезненно, страдал от катаракт, и ему запретили посещение саркофага после многократного облучения в предыдущие десятилетия.

    Впрочем, чувство юмора Корнеева осталось неизменным . Похоже, он ничуть не жалеет о работе своей жизни: "Советская радиация, - шутит он, - лучшая радиация в мире" .


Радиация - невидима, неслышима, не имеет вкуса, цвета и запаха, а посему ужасна. Слово «радиация » вызывает паранойю, ужас или непонятное состояние, сильно напоминающее тревогу. При непосредственном воздействии радиации может развиться лучевая болезнь (в этот момент тревога перерастает в панику, потому что никто не знает, что это и как с этим бороться). Получается, радиация смертельна… но не всегда, иногда даже и полезна.

Так что же это такое? С чем её едят, эту радиацию, как пережить встречу с ней и куда позвонить, если она случайно пристанет на улице?

Что такое радиоактивность и радиация?

Радиоактивность — неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией. Далее мы будем говорить лишь о той радиации, которая связана с радиоактивностью.

Радиация , или ионизирующее излучение — это частицы и гамма-кванты, энергия которых достаточно велика, чтобы при воздействии на вещество создавать ионы разных знаков. Радиацию нельзя вызвать с помощью химических реакций.

Какая бывает радиация?

Различают несколько видов радиации.

  • Альфа-частицы : относительно тяжелые, положительно заряженные частицы, представляющие собой ядра гелия.
  • Бета-частицы — это просто электроны.
  • Гамма-излучение имеет ту же электромагнитную природу, что и видимый свет, однако обладает гораздо большей проникающей способностью.
  • Нейтроны — электрически нейтральные частицы, возникают главным образом непосредственно вблизи работающего атомного реактора, куда доступ, естественно, регламентирован.
  • Рентгеновское излучение подобно гамма-излучению, но имеет меньшую энергию. Кстати, наше Солнце — один из естественных источников рентгеновского излучения, но земная атмосфера обеспечивает от него надежную защиту.

Ультрафиолетовое излучение и излучение лазеров в нашем рассмотрении не являются радиацией.

Заряженные частицы очень сильно взаимодействуют с веществом, поэтому, с одной стороны, даже одна альфа-частица при попадании в живой организм может уничтожить или повредить очень много клеток, но, с другой стороны, по той же причине, достаточной защитой от альфа- и бета-излучения является любой, даже очень тонкий слой твердого или жидкого вещества — например, обычная одежда (если, конечно, источник излучения находится снаружи).

Следует различать радиоактивность и радиацию . Источники радиации — радиоактивные вещества или ядерно-технические установки (реакторы, ускорители, рентгеновское оборудование и т.п.) — могут существовать значительное время, а радиация существует лишь до момента своего поглощения в каком-либо веществе.

К чему может привести воздействие радиации на человека?

Воздействие радиации на человека называют облучением. Основу этого воздействия составляет передача энергии радиации клеткам организма.
Облучение может вызвать нарушения обмена веществ, инфекционные осложнения, лейкоз и злокачественные опухоли, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь . Последствия облучения сильнее сказываются на делящихся клетках, и поэтому для детей облучение гораздо опаснее, чем для взрослых.

Что же касается часто упоминаемых генетических (т.е. передаваемых по наследству) мутаций как следствие облучения человека, то таковых еще ни разу не удалось обнаружить. Даже у 78000 детей тех японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не было констатировано какого-либо увеличения числа случаев наследственных болезней (книга «Жизнь после Чернобыля» шведских ученых С.Кулландера и Б.Ларсона ).

Следует помнить, что гораздо больший РЕАЛЬНЫЙ ущерб здоровью людей приносят выбросы предприятий химической и сталелитейной промышленности, не говоря уже о том, что науке пока неизвестен механизм злокачественного перерождения тканей от внешних воздействий.

Как радиация может попасть в организм?

Организм человека реагирует на радиацию, а не на ее источник.
Те источники радиации, которыми являются радиоактивные вещества, могут проникать в организм с пищей и водой (через кишечник), через легкие (при дыхании) и, в незначительной степени, через кожу, а также при медицинской радиоизотопной диагностике. В этом случае говорят о внутреннем обучении.
Кроме того, человек может подвергнуться внешнему облучению от источника радиации, который находится вне его тела.
Внутреннее облучение значительно опаснее внешнего.

Передается ли радиация как болезнь?

Радиацию создают радиоактивные вещества или специально сконструированное оборудование. Сама же радиация, воздействуя на организм, не образует в нем радиоактивных веществ, и не превращает его в новый источник радиации. Таким образом, человек не становится радиоактивным после рентгеновского или флюорографического обследования. Кстати, и рентгеновский снимок (пленка) также не несет в себе радиоактивности.

Исключением является ситуация, при которой в организм намеренно вводятся радиоактивные препараты (например, при радиоизотопном обследовании щитовидной железы), и человек на небольшое время становится источником радиации. Однако препараты такого рода специально выбираются так, чтобы быстро терять свою радиоактивность за счет распада, и интенсивность радиации быстро спадает.

Конечно, можно «испачкать » тело или одежду радиоактивной жидкостью, порошком или пылью. Тогда некоторая часть такой радиоактивной «грязи» — вместе с обычной грязью — может быть передана при контакте другому человеку. В отличие от болезни, которая, передаваясь от человека к человеку, воспроизводит свою вредоносную силу (и даже может привести к эпидемии), передача грязи приводит к ее быстрому разбавлению до безопасных пределов.

В каких единицах измеряется радиоактивность?

Мерой радиоактивности служит активность . Измеряется в Беккерелях (Бк ), что соответствует 1 распаду в секунду . Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или объема (Бк/куб.м).
Также встречается еще такая единица активности, как Кюри (Ки ). Это — огромная величина: 1 Ки = 37000000000 (37*10^9) Бк .
Активность радиоактивного источника характеризует его мощность. Так, в источнике активностью 1 Кюри происходит 37000000000 распадов в секунду .

Как было сказано выше, при этих распадах источник испускает ионизирующее излучение. Мерой ионизационного воздействия этого излучения на вещество является экспозиционная доза . Часто измеряется в Рентгенах (Р ). Поскольку 1 Рентген — довольно большая величина, на практике удобнее пользоваться миллионной (мкР ) или тысячной (мР ) долями Рентгена.
Действие распространенных бытовых дозиметров основано на измерении ионизации за определенное время, то есть мощности экспозиционной дозы. Единица измерения мощности экспозиционной дозы — микроРентген/час .

Мощность дозы, умноженная на время, называется дозой . Мощность дозы и доза соотносятся так же как скорость автомобиля и пройденное этим автомобилем расстояние (путь).
Для оценки воздействия на организм человека используются понятия эквивалентная доза и мощность эквивалентной дозы . Измеряются, соответственно, в Зивертах (Зв ) и Зивертах/час (Зв/час ). В быту можно считать, что 1 Зиверт = 100 Рентген . Необходимо указывать на какой орган, часть или все тело пришлась данная доза.

Можно показать, что упомянутый выше точечный источник активностью 1 Кюри (для определенности рассматриваем источник цезий-137) на расстоянии 1 метр от себя создает мощность экспозиционной дозы приблизительно 0,3 Рентгена/час, а на расстоянии 10 метров — приблизительно 0,003 Рентгена/час. Уменьшение мощности дозы с увеличением расстояния от источника происходит всегда и обусловлено законами распространения излучения .

Теперь абсолютно понятна типичная ошибка средств массовой информации, сообщающих: «Сегодня на такой-то улице обнаружен радиоактивный источник в 10 тысяч рентген при норме 20 ».
Во-первых, в Рентгенах измеряется доза, а характеристикой источника является его активность. Источник в столько-то Рентген — это то же самое, что мешок картошки весом в столько-то минут.
Поэтому в любом случае речь может идти только о мощности дозы от источника. И не просто мощности дозы, а с указанием того, на каком расстоянии от источника эта мощность дозы измерена.

Далее можно высказать следующие соображения. 10 тысяч рентген/час — достаточно большая величина. С дозиметром в руках ее вряд ли можно измерить, так как при приближении к источнику дозиметр прежде покажет и 100 Рентген/час, и 1000 Рентген/час! Весьма трудно предположить, что дозиметрист продолжит приближаться к источнику. Поскольку дозиметры измеряют мощность дозы в микроРентгенах/час, то можно предполагать, что и в данном случае речь идет о 10 тысяч микроРентген/час = 10 миллиРентген/час = 0,01 Рентгена/час. Подобные источники, хотя и не представляют смертельной опасности, на улице попадаются реже, чем сторублевые купюры, и это может быть темой для информационного сообщения. Тем более что упоминание о «норме 20» можно понимать как условную верхнюю границу обычных показаний дозиметра в городе, т.е. 20 микроРентген/час.

Поэтому правильно сообщение, по-видимому, должно выглядеть так: «Сегодня на такой-то улице обнаружен радиоактивный источник, вплотную к которому дозиметр показывает 10 тысяч микрорентген в час, при том что среднее значение радиационного фона в нашем городе не превосходит 20 микрорентген в час».

Что такое изотопы?

В таблице Менделеева более 100 химических элементов. Почти каждый из них представлен смесью стабильных и радиоактивных атомов , которые называют изотопами данного элемента. Известно около 2000 изотопов, из которых около 300 — стабильные.
Например, у первого элемента таблицы Менделеева — водорода — существуют следующие изотопы:
водород Н-1 (стабильный)
дейтерий Н-2 (стабильный)
тритий Н-3 (радиоактивный, период полураспада 12 лет)

Радиоактивные изотопы обычно называют радионуклидами .

Что такое период полураспада?

Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду.
Скорость распада принято характеризовать периодом полураспада: это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза.
Абсолютно ошибочной является следующая трактовка понятия «период полураспада»: «если радиоактивное вещество имеет период полураспада 1 час, это значит, что через 1 час распадется его первая половина, а еще через 1 час — вторая половина, и это вещество полностью исчезнет (распадется) «.

Для радионуклида с периодом полураспада 1 час это означает, что через 1 час его количество станет меньше первоначального в 2 раза, через 2 часа — в 4, через 3 часа — в 8 раз и т.д., но полностью не исчезнет никогда. В такой же пропорции будет уменьшается и радиация, излучаемая этим веществом. Поэтому можно прогнозировать радиационную обстановку на будущее, если знать, какие и в каком количестве радиоактивные вещества создают радиацию в данном месте в данный момент времени.

У каждого радионуклида — свой период полураспада , он может составлять как доли секунды, так и миллиарды лет. Важно, что период полураспада данного радионуклида постоянен, и изменить его невозможно .
Образующиеся при радиоактивном распаде ядра, в свою очередь, также могут быть радиоактивными. Так, например, радиоактивный радон-222 обязан своим происхождением радиоактивному урану-238.

Иногда встречаются утверждения, что радиоактивные отходы в хранилищах полностью распадутся за 300 лет. Это не так. Просто это время составит примерно 10 периодов полураспада цезия-137, одного из самых распространенных техногенных радионуклидов, и за 300 лет его радиоактивность в отходах снизится почти в 1000 раз, но, к сожалению, не исчезнет.

Что вокруг нас радиоактивно?

Воздействие на человека тех или иных источников радиации поможет оценить следующая диаграмма (по данным А.Г.Зеленкова, 1990).

По происхождению радиоактивность делят на естественную (природную) и техногенную.

а) Естественная радиоактивность
Естественная радиоактивность существует миллиарды лет, она присутствует буквально повсюду. Ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Любой человек слегка радиоактивен: в тканях человеческого тела одним из главных источников природной радиации являются калий-40 и рубидий-87, причем не существует способа от них избавиться.

Учтем, что современный человек до 80% времени проводит в помещениях — дома или на работе, где и получает основную дозу радиации: хотя здания защищают от излучений извне, в стройматериалах, из которых они построены, содержится природная радиоактивность. Существенный вклад в облучение человека вносит радон и продукты его распада.

б) Радон
Основным источником этого радиоактивного инертного газа является земная кора. Проникая через трещины и щели в фундаменте, полу и стенах, радон задерживается в помещениях. Другой источник радона в помещении — это сами строительные материалы (бетон, кирпич и т.д.), содержащие естественные радионуклиды, которые являются источником радона. Радон может поступать в дома также с водой (особенно если она подается из артезианских скважин), при сжигании природного газа и т.д.
Радон в 7,5 раз тяжелее воздуха. Как следствие, концентрация радона в верхних этажах многоэтажных домов обычно ниже, чем на первом этаже.
Основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении; регулярное проветривание может снизить концентрацию радона в несколько раз.
При длительном поступлении радона и его продуктов в организм человека многократно возрастает риск возникновения рака легких.
Сравнить мощность излучения различных источников радона поможет следующая диаграмма.

в) Техногенная радиоактивность
Техногенная радиоактивность возникает вследствие человеческой деятельности.
Осознанная хозяйственная деятельность, в процессе которой происходит перераспределение и концентрирование естественных радионуклидов, приводит к заметным изменениям естественного радиационного фона. Сюда относится добыча и сжигание каменного угля, нефти, газа, других горючих ископаемых, использование фосфатных удобрений, добыча и переработка руд.
Так, например, исследования нефтепромыслов на территории России показывают значительное превышение допустимых норм радиоактивности, повышение уровней радиации в районе скважин, вызванное отложением на оборудовании и прилегающем грунте солей радия-226, тория-232 и калия-40. Особенно загрязнены действующие и отработавшие трубы, которые нередко приходится классифицировать как радиоактивные отходы.
Такой вид транспорта, как гражданская авиация, подвергает своих пассажиров повышенному воздействию космического излучения.
И, конечно, свой вклад дают испытания ядерного оружия, предприятия атомной энергетики и промышленности.

Безусловно, возможно и случайное (неконтролируемое) распространение радиоактивных источников: аварии, потери, хищения, распыление и т.п. Таки ситуации, к счастью, ОЧЕНЬ РЕДКИ. Кроме того, их опасность не следует преувеличивать.
Для сравнения, вклад Чернобыля в суммарную коллективную дозу радиации, которую получат россияне и украинцы, проживающие на загрязненных территориях, в предстоящие 50 лет составит всего 2%,тогда как 60% дозы будут определяться естественной радиоактивностью.

Как выглядят часто встречаемые радиоактивные предметы?

Согласно данным МосНПО «Радон», более 70 процентов всех выявляемых в Москве случаев радиоактивных загрязнений приходится на жилые массивы с интенсивным новым строительством и зеленые зоны столицы. Именно в последних в 50-60-е годы располагались свалки бытового мусора, куда свозились также низкорадиоактивные промышленные отходы, считавшиеся тогда относительно безопасными.

Кроме того, носителями радиоактивности могут быть отдельные предметы, изображенные ниже:

Переключатель со светящимся в темноте тумблером, кончик которого покрашен светосоставом постоянного действия на основе солей радия. Мощность дозы при измерениях «в упор» — около 2 миллиРентген/час

Является ли компьютер источником радиации?

Единственной частью компьютера, в отношении которой можно говорить о радиации, являются только мониторы на электронно-лучевых трубках (ЭЛТ); дисплеев других типов (жидкокристаллических, плазменных и т.п.) это не касается.
Мониторы, наряду с обычными телевизорами на ЭЛТ, можно считать слабым источником рентгеновского излучения, возникающим на внутренней поверхности стекла экрана ЭЛТ. Однако благодаря большой толщине этого же стекла, оно же и поглощает значительную часть излучения. До настоящего времени не обнаружено никакого влияния рентгеновского излучения мониторов на ЭЛТ на здоровье, тем не менее все современные ЭЛТ выпускаются с условно безопасным уровнем рентгеновского излучения.

В настоящее время в отношении мониторов общепризнанными для всех производителей являются шведские национальные стандарты «MPR II», «TCO-92», -95, -99 . Эти стандарты, в частности, регламентируют электрические и магнитные поля от мониторов.
Что касается термина «low radiation» («низкий уровень излучения»), то это не стандарт, а всего лишь декларация изготовителя о том, что он предпринял нечто, лишь ему известное, с тем чтобы уменьшить излучение. Аналогичный смысл имеет менее распространенный термин «low emission».

Нормы, действующие в России, изложены в документе «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы» (СанПиН СанПиН 2.2.2/2.4.1340-03), полный текст находится по адресу, а краткая выдержка о допустимых значениях всех видов излучений от видеомониторов — здесь.

При выполнении заказов на радиационный контроль офисов ряда организаций г.Москвы, сотрудниками ЛРК-1 было проведено дозиметрическое обследование около 50 мониторов на ЭЛТ разных марок, с размером диагонали экрана от 14 до 21 дюйма. Во всех случаях мощность дозы на расстоянии 5 см от мониторов не превосходила 30 мкР/час, т.е. с трехкратным запасом укладывалась в допустимую норму (100 мкР/час).

Что такое нормальный радиационный фон?

На Земле существуют населенные области с повышенным радиационным фоном. Это, например, высокогорные города Богота, Лхаса, Кито, где уровень космического излучения примерно в 5 раз выше, чем на уровне моря.

Это также песчаные зоны с большой концентрацией минералов, содержащих фосфаты с примесью урана и тория — в Индии (штат Керала) и Бразилии (штат Эспириту-Санту). Можно упомянуть участок выхода вод с высокой концентрацией радия в Иране (г. Ромсер). Хотя в некоторых из этих районов мощность поглощенной дозы в 1000 раз превышает среднюю по поверхности Земли, обследование населения не выявило сдвигов в структуре заболеваемости и смертности.

Кроме того, даже для конкретной местности не существует «нормального фона» как постоянной характеристики, его нельзя получить как результат небольшого числа измерений.
В любом месте, даже для неосвоенных территорий, где «не ступала нога человека», радиационный фон изменяется от точки к точке, а также в каждой конкретной точке со временем. Эти колебания фона могут быть весьма значительными. В обжитых местах дополнительно накладываются факторы деятельности предприятий, работы транспорта и т.д. Например, на аэродромах, благодаря высококачественному бетонному покрытию с гранитным щебнем, фон, как правило, выше, чем на прилегающей местности.

Измерения радиационного фона в городе Москве позволяют указать ТИПИЧНЫЕ значение фона на улице (открытой местности) — 8 — 12 мкР/час , в помещении — 15 — 20 мкР/час .

Какие бывают нормы радиоактивности?

В отношении радиоактивности существует очень много норм — нормируется буквально все. Во всех случаях проводится различие между населением и персоналом, т.е. лицами, чья работа связана с радиоактивностью (работники АЭС, ядерной промышленности и т.п.). Вне своего производства персонал относится к населению. Для персонала и производственных помещений устанавливаются свои нормы.

Далее будем говорить только о нормах для населения — той их части, которая прямо связана с обычной жизнедеятельностью, опираясь на Федеральный Закон «О радиационной безопасности населения» № 3-ФЗ от 05.12.96 и «Нормы радиационной безопасности (НРБ-99). Санитарные правила СП 2.6.1.1292-03».

Основная задача радиационного контроля (измерений радиации или радиоактивности) состоит в определении соответствия радиационных параметров исследуемого объекта (мощность дозы в помещении, содержание радионуклидов в строительных материалах и т.д.) установленным нормам.

а) воздух, продукты питания и вода
Для вдыхаемого воздуха, воды и продуктов питания нормируется содержание как техногенных, так и естественных радиоактивных веществ.
В дополнение к НРБ-99 применяются «Гигиенические требования к качеству и безопасности продовольственного сырья и пищевых продуктов (СанПиН 2.3.2.560-96)».

б) стройматериалы
Нормируется содержание радиоактивных веществ из семейств урана и тория, а также калий-40 (в соответствии с НРБ-99).
Удельная эффективная активность (Аэфф) естественных радионуклидов в строительных материалах, используемых для вновь стоящихся жилых и общественных зданий (1 класс),
Аэфф = АRa +1,31АTh + 0,085 Ак не должна превышать 370 Бк/кг,
где АRa и АTh — удельные активности радия-226 и тория-232, находящиеся в равновесии с остальными членами уранового и ториевого семейств, Ак — удельная активность К-40 (Бк/кг).
Также применяются ГОСТ 30108-94 «Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов» и ГОСТ Р 50801-95 «Древесное сырье, лесоматериалы, полуфабрикаты и изделия из древесины и древесных материалов. Допустимая удельная активность радионуклидов, отбор проб и методы измерения удельной активности радионуклидов».
Отметим, что согласно ГОСТ 30108-94 за результат определения удельной эффективной активности в контролируемом материале и установления класса материала принимается значение Аэфф м:
Аэфф м = Аэфф + DАэфф , где DАэфф — погрешность опеределения Аэфф .

в) помещения
Нормируется суммарное содержание радона и торона в воздухе помещений:
для новых зданий — не более 100 Бк/м3, для уже эксплуатируемых — не более 200 Бк/м3.
В городе Москве применяются МГСН 2.02-97 «Допустимые уровни ионизирующего излучения и радона на участках застройки».

г) медицинская диагностика
Не устанавливаются предельные дозовые значения для пациентов, однако выдвигается требование минимально достаточных уровней облучения для получения диагностической информации.

д) компьютерная техника
Мощность экспозиционной дозы рентгеновского излучения на расстоянии 5 см от любой точки видеомонитора или персональной ЭВМ не должна превышать 100 мкР/час. Норма содержится в документе «Гигиенические требования к персональным электронно-вычислительным машинам и организации работы» (СанПиН 2.2.2/2.4.1340-03).

Как защититься от радиации?

От источника радиации защищаются временем, расстоянием и веществом.

  • Временем — вследствие того, что чем меньше время пребывания вблизи источника радиации, тем меньше полученная от него доза облучения.
  • Расстоянием — благодаря тому, что излучение уменьшается с удалением от компактного источника (пропорционально квадрату расстояния). Если на расстоянии 1 метр от источника радиации дозиметр фиксирует 1000 мкР/час, то уже на расстоянии 5 метров показания снизятся приблизительно до 40 мкР/час.
  • Веществом — необходимо стремиться, чтобы между Вами и источником радиации оказалось как можно больше вещества: чем его больше и чем оно плотнее, тем большую часть радиации оно поглотит.

Что касается главного источника облучения в помещениях — радона и продуктов его распада, то регулярное проветривание позволяет значительно уменьшить их вклад в дозовую нагрузку.
Кроме того, если речь идет о строительстве или отделке собственного жилья, которое, вероятно, прослужит не одному поколению, следует постараться купить радиационно безопасные стройматериалы — благо их ассортимент ныне чрезвычайно богат.

Помогает ли от радиации алкоголь?

Алкоголь, принятый незадолго до облучения, в некоторой степени способен ослабить последствия облучения. Однако его защитное действие уступает современным противорадиационным препаратам.

Когда думать о радиации?

Всегда думать. Но в обыденной жизни крайне мала вероятность столкнуться с источником радиации, представляющим непосредственную угрозу для здоровья. Например, в г. Москве и области фиксируется менее 50 подобных случаев в год, причем в большинстве случаев — благодаря постоянной планомерной работе профессиональных дозиметристов (сотрудников МосНПО «Радон» и ЦГСЭН Москвы) в местах наиболее вероятного обнаружения источников радиации и локальных радиоактивных загрязнений (свалки, котлованы, склады металлолома).
Тем не менее именно в обыденной жизни иногда о радиоактивности следует вспомнить. Это полезно сделать:

  • при покупке квартиры, дома, земельного участка,
  • при планировании строительных и отделочных работ,
  • при выборе и приобретении строительных и отделочных материалов для квартиры или дома
  • при выборе материалов для благоустройства территории вокруг дома (грунт насыпных газонов, насыпные покрытия для теннисных кортов, тротуарная плитка и брусчатка и т.д.)

Следует все-таки отметить, что радиация — далеко не самая главная причина для постоянного беспокойства. По разработанной в США шкале относительной опасности различных видов антропогенного воздействия на человека, радиация находится на 26 -м месте, а первые два места занимают тяжелые металлы и химические токсиканты .

В повседневной жизни человека ионизирующие излучения встречаются постоянно. Мы их не ощущаем, но не можем отрицать их воздействия на живую и неживую природу. Не так давно люди научились использовать их как во благо, так и в качестве оружия массового истребления. При правильном использовании эти излучения способны изменить жизнь человечества в лучшую сторону.

Виды ионизирующих излучений

Чтобы разобраться с особенностями влияния на живые и неживые организмы, нужно выяснить, какими они бывают. Также важно знать их природу.

Ионизирующее излучение - это особенные волны, которые способны проникать через вещества и ткани, вызывая ионизацию атомов. Существует несколько его видов: альфа-излучение, бета-излучение, гамма-излучение. Все они имеют разный заряд и способности действовать на живые организмы.

Альфа-излучение самое заряженное из всех видов. Оно обладает огромной энергией, способной даже в малых дозах вызывать лучевую болезнь. Но при непосредственном облучении проникает только в верхние слои кожи человека. От альфа-лучей защищает даже тонкий лист бумаги. В то же время, попадая в организм с едой или со вдохом, источники этого излучения довольно быстро становятся причиной смерти.

Бета-лучи несут немного меньший заряд. Они способны проникать глубоко в организм. При длительном облучении становятся причиной смерти человека. Меньшие дозы вызывают изменение в клеточной структуре. Защитой может послужить тонкий лист алюминия. Излучение изнутри организма также смертельно.

Самым опасным считается гамма-излучение. Оно проникает насквозь организма. В больших дозах вызывает радиационный ожог, лучевую болезнь, смерть. Защитой от него может быть только свинец и толстый слой бетона.

Особенной разновидностью гамма-излучения считаются рентгеновские лучи, которые генерируются в рентгеновской трубке.

История исследований

Впервые об ионизирующих излучениях мир узнал 28 декабря 1895 года. Именно в этот день Вильгельм К. Рентген объявил, что открыл особый вид лучей, способных проходить через разные материалы и человеческий организм. С этого момента многие врачи и ученые начали активно работать с этим явлением.

Длительное время никто не знал о его влиянии на человеческий организм. Поэтому в истории известно немало случаев гибели от чрезмерного облучения.

Супруги Кюри подробно изучили источники и свойства, которые имеет ионизирующее излучение. Это дало возможность использовать его с максимальной пользой, избегая негативных последствий.

Естественные и искусственные источники излучений

Природа создала разнообразные источники ионизирующего излучения. В первую очередь это радиация солнечных лучей и космоса. Большая ее часть поглощается озоновым шаром, который находится высоко над нашей планетой. Но некоторая их часть достигает поверхности Земли.

На самой Земле, а точнее в ее глубинах, есть некоторые вещества, продуцирующие радиацию. Среди них - изотопы урана, стронция, радона, цезия и другие.

Искусственные источники ионизирующих излучений созданы человеком для разнообразных исследований и производства. При этом сила излучений может в разы превышать естественные показатели.

Даже в условиях защиты и соблюдения мер безопасности люди получают опасные для здоровья дозы облучения.

Единицы измерения и дозы

Ионизирующее излучение принято соотносить с его взаимодействием с человеческим организмом. Поэтому все единицы измерения так или иначе связаны со способностью человека поглощать и накапливать энергию ионизации.

В системе СИ дозы ионизирующего излучения измеряются единицей, именуемой грей (Гр). Она показывает количество энергии на единицу облучаемого вещества. Один Гр равен одному Дж/кг. Но для удобства чаще используется внесистемная единица рад. Она равна 100 Гр.

Радиационный фон на местности измеряется экспозиционными дозами. Одна доза равна Кл/кг. Эта единица используется в системе СИ. Внесистемная единица, соответствующая ей, называется рентген (Р). Чтобы получить поглощенную дозу 1 рад, нужно поддаться облучению экспозиционной дозой около 1 Р.

Поскольку разные виды ионизирующих излучений имеют разный заряд энергии, его измерение принято сравнивать с биологическим влиянием. В системе СИ единицей такого эквивалента выступает зиверт (Зв). Внесистемный его аналог - бэр.

Чем сильнее и дольше излучение, тем больше энергии поглощается организмом, тем опаснее его влияние. Чтобы узнать допустимое время пребывания человека в радиационном загрязнении, используются специальные приборы - дозиметры, осуществляющие измерение ионизирующего излучения. Это бывают как приборы индивидуального пользования, так и большие промышленные установки.

Влияние на организм

Вопреки бытующему мнению, не всегда опасно и смертельно любое ионизирующее излучение. Это можно увидеть на примере с ультрафиолетовыми лучами. В малых дозах они стимулируют генерацию витамина D в человеческом организме, регенерацию клеток и увеличение пигмента меланина, дающего красивый загар. Но длительное облучение вызывает сильные ожоги и может стать причиной развития рака кожи.

В последние годы активно изучается воздействие ионизирующего излучения на человеческий организм и его практическое применение.

В небольших дозах излучения не причиняют никакого вреда организму. До 200 милирентген могут снизить количество белых кровяных клеток. Симптомом такого облучения будут тошнота и головокружение. Около 10% людей гибнут, получив такую дозу.

Большие дозы вызывают расстройство пищеварительной системы, выпадение волос, ожоги кожи, изменения клеточной структуры организма, развитие раковых клеток и смерть.

Лучевая болезнь

Длительное действие ионизирующего излучения на организм и получение им большой дозы облучения могут стать причиной лучевой болезни. Больше половины случаев этого заболевания ведут к летальному исходу. Остальные становятся причиной целого ряда генетических и соматических заболеваний.

На генетическом уровне происходят мутации в половых клетках. Их изменения становятся очевидными в следующих поколениях.

Соматические болезни выражаются канцерогенезом, необратимыми изменениями в разных органах. Лечение этих заболеваний длительное и довольно трудное.

Лечение лучевых поражений

В результате патогенного воздействия радиации на организм возникают различные поражения органов человека. В зависимости от дозы облучения проводят разные методы терапии.

В первую очередь больного помещают в стерильную палату, чтобы избежать возможности инфицирования открытых пораженных участков кожи. Далее проводят специальные процедуры, способствующие скорому выведению из организма радионуклидов.

При сильных поражениях может понадобиться пересадка костного мозга. От радиации он теряет способность воспроизводить красные кровяные клетки.

Но в большинстве случаев лечение легких поражений сводится к обезболиванию пораженных участков, стимулированию регенерации клеток. Большое внимание уделяется реабилитации.

Влияние ионизирующего излучения на старение и рак

В связи с влиянием ионизирующих лучей на организм человека ученые проводили разные эксперименты, доказывающие зависимость процессов старения и канцерогенеза от дозы облучения.

В лабораторных условиях подвергались облучениям группы клеточных культур. Вследствие этого удалось доказать, что даже незначительное облучение способствует ускорению старения клеток. При этом чем старше культура, тем больше она подвержена этому процессу.

Длительное же облучение приводит к гибели клеток или аномальному и быстрому их делению и росту. Этот факт свидетельствует о том, что ионизирующее излучение на организм человека оказывает канцерогенное действие.

В то же время воздействие волн на пораженные раковые клетки приводило к их полной гибели или остановке процессов их деления. Это открытие помогло разработать методику лечения раковых опухолей человека.

Практическое применение радиации

Впервые излучения начали использовать в медицинской практике. С помощью рентгеновских лучей врачам удалось заглянуть внутрь человеческого организма. При этом вреда ему практически не наносилось.

Далее с помощью облучения начали лечить раковые заболевания. В большинстве случаев этот метод оказывает положительное влияние, невзирая на то что весь организм подвергается сильному воздействию излучения, влекущему за собой ряд симптомов лучевой болезни.

Кроме медицины, ионизирующие лучи используются и в других отраслях. Геодезисты с помощью радиации могут изучить особенности строения земной коры на ее отдельных участках.

Способность некоторых ископаемых выделять большое количество энергии человечество научилось использовать в собственных целях.

Атомная энергетика

Именно за атомной энергией будущее всего населения Земли. Атомные электростанции выступают источниками сравнительно недорогого электричества. При условии их правильной эксплуатации такие электростанции намного безопаснее, чем ТЭС и ГЭС. От атомных электростанций намного меньше загрязнения окружающей среды как лишним теплом, так и отходами производства.

В то же время на основании атомной энергии ученые разработали оружие массового поражения. На данный момент на планете атомных бомб столько, что запуск незначительного их количества может стать причиной ядерной зимы, вследствие которой погибнут практически все живые организмы, населяющие ее.

Средства и способы защиты

Использование в повседневной жизни радиации требует серьезных мер предосторожности. Защита от ионизирующих излучений делится на четыре типа: временем, расстоянием, количеством и экранированием источников.

Даже в среде с сильным радиационным фоном человек может находиться некоторое время без вреда для своего здоровья. Именно этот момент определяет защиту временем.

Чем больше расстояние до источника излучения, тем меньше доза поглощаемой энергии. Поэтому стоит избегать близкого контакта с местами, где есть ионизирующее излучение. Это гарантированно убережет от нежелательных последствий.

Если есть возможность использовать источники с минимальным излучением, им в первую очередь отдается предпочтение. Это и есть защита количеством.

Экранирование же означает создание барьеров, через которые не проникают вредоносные лучи. Примером тому служат свинцовые ширмы в рентгеновских кабинетах.

Бытовая защита

В случае объявления радиационной катастрофы следует немедленно закрыть все окна и двери, постараться запастись водой из закрытых источников. Еда должна быть только консервированной. При перемещении на открытой местности максимально закрыть тело одеждой, а лицо - респиратором или влажной марлей. Стараться не заносить в дом верхнюю одежду и обувь.

Необходимо также приготовиться к возможной эвакуации: собрать документы, запас одежды, воды и еды на 2-3 суток.

Ионизирующие излучения как экологический фактор

На планете Земля довольно много загрязненных радиацией участков. Причиной тому служат как естественные процессы, так и техногенные катастрофы. Самые известные из них - авария на ЧАЭС и атомные бомбы над городами Хиросима и Нагасаки.

В таких местах человек не может находиться без вреда для собственного здоровья. В то же время не всегда есть возможность узнать заранее о радиационном загрязнении. Порой даже некритический радиационный фон может стать причиной катастрофы.

Причиной тому служит способность живых организмов поглощать и накапливать радиацию. При этом они сами превращаются в источники ионизирующего излучения. Всем известные «черные» анекдоты о чернобыльских грибах основаны именно на этом свойстве.

В таких случаях защита от ионизирующих излучений сводится к тому, что все потребительские продукты поддаются тщательному радиологическому изучению. В то же время на стихийных рынках всегда есть шанс купить именно знаменитые «чернобыльские грибы». Поэтому стоит воздержаться от покупок у непроверенных продавцов.

Человеческий организм склонен накапливать опасные вещества, вследствие чего происходит постепенное отравление изнутри. Неизвестно, когда именно дадут о себе знать последствия влияния этих ядов: через день, год или через поколение.

Ионизирующее излучение - это совокупность различных видов микрочастиц и физических полей, обладающих способностью ионизировать вещество, то есть образовывать в нем электрически заряженные частицы - ионы.

РАЗДЕЛ III. УПРАВЛЕНИЕ БЕЗОПАСНОСТЬЮ ЖИЗНЕДЕЯТЕЛЬНОСТИ И ЭКОНОМИЧЕСКИЕ МЕХАНИЗМЫ ЕГО ОБЕСПЕЧЕНИЯ

Различают несколько видов ионизирующих излучений: альфа-, бета-, гамма-излучение, а также нейтронное излучение.

Альфа-излучение

В формировании положительно заряженных альфа-частиц принимают участие 2 протона и 2 нейтрона, входящих в состав ядер гелия. Альфа-частицы образуются при распаде ядра атома и могут иметь начальную кинетическую энергию от 1,8 до 15 МэВ. Характерными особенностями альфа-излучения являются высокая ионизирующая и малая проникающая способности. При движении альфа-частицы очень быстро теряют свою энергию, и это обуславливает тот факт, что ее не хватает даже для преодоления тонких пластмассовых поверхностей. В целом, внешнее облучение альфа-частицами, если не брать в расчет высокоэнергичные альфа-частицы, полученные с помощью ускорителя, не несет в себе никакого вреда для человека, а вот проникновение частиц внутрь организма может быть опасно для здоровья., поскольку альфа-радионуклиды отличаются большим периодом полураспада и обладают сильной ионизацией. В случае попадания внутрь организма альфа-частицы часто могут быть даже опаснее, чем бета- и гамма-излучение.

Бета-излучение

Заряженные бета-частицы, скорость которых близка к скорости света, образуются в результате бета-распада. Бета-лучи обладают большей проникающей способностью, чем альфа-лучи - они могут вызывать химические реакции, люминесценцию, ионизировать газы, оказывать эффект на фотопластинки. В качестве защиты от потока заряженных бета-частиц (энергией не более 1МэВ) достаточно будет использовать обычную алюминиевую пластину толщиной 3-5 мм.

Фотонное излучение: гамма-излучение и рентгеновское излучение

Фотонное излучение включает в себя два вида излучений: рентгеновское (может быть тормозным и характеристическим) и гамма-излучение.

Наиболее распространенным видом фотонного излучения являются обладающие очень высокой энергией при ультракороткой длине волны гамма-частицы, которые представляют собой поток высокоэнергичных, не обладающих зарядом фотонов. В отличие от альфа- и бета-лучей гамма-частицы не отклоняются магнитными и электрическими полями и обладают значительно большей проникающей способностью. В определенных количествах и при определенной продолжительности воздействия гамма-излучение может вызвать лучевую болезнь, привести к возникновению различных онкологических заболеваний. Препятствовать распространению потока гамма-частиц могут только такие тяжелые химические элементы, как, например, свинец, обедненный уран и вольфрам.

Нейтронное излучение

Источником возникновения нейтронного излучения могут быть ядерные взрывы, ядерные реакторы, лабораторные и промышленные установки.

Сами нейтроны представляют собой электрически нейтральные, нестабильные (период полураспада свободного нейтрона составляет около 10 минут) частицы, которые благодаря тому, что у них отсутствует заряд, отличаются большой проникающей способностью при слабой степени взаимодействия с веществом. Нейтронное излучение очень опасно, поэтому для защиты от него используют ряд специальных, в основном водородосодержащих, материалов. Лучше всего нейтронное излучение поглощается обычной водой, полиэтиленом, парафином, а также растворами гидроксидов тяжелых металлов.

Как ионизирующие излучения воздействуют на вещества?

Все виды ионизирующих излучений в той или иной степени оказывают воздействие на различные вещества, но сильнее всего оно выражено у гамма-частиц и у нейтронов. Так, при длительном воздействии они могут существенно изменить свойства различных материалов, изменить химический состав веществ, ионизировать диэлектрики и оказывать разрушительный эффект на биологические ткани. Естественный радиационный фон не принесет человеку особого вреда, однако при обращении с искусственными источниками ионизирующих излучений стоит быть очень осторожными и предпринимать все необходимые меры, чтобы до минимума снизить уровень воздействия излучения на организм.

Виды ионизирующих излучений и их свойства

Ионизирующим излучением называют потоки частиц и электромагнитных квантов, в результате воздействия которых на среду образуются разнозаряженные ионы.

Различные виды излучений сопровождаются высвобождением определенного количества энергии и обладают разной проникающей способностью, поэтому они оказывают неодинаковое воздействие на организм. Наибольшую опасность для человека представляют радиоактивные излучения, такие как у-, рентгеновское, нейтронное, а- и в-излучения.

Рентгеновское и у-излучения представляют собой потоки квантовой энергии. Гамма-излучение обладает более короткими длинами волн по сравнению с рентгеновским. По своей природе и свойствам эти излучения мало отличаются друг от друга, обладают большой проникающей способностью, прямолинейностью распространения и свойством создавать вторичное и рассеянное излучение в средах, через которые проходят. Однако если рентгеновские лучи обычно получают с помощью электронного аппарата, то у-лучи испускаются нестабильными или радиоактивными изотопами.

Остальные типы ионизирующего излучения представляют собой быстродвижущиеся частицы вещества (атома), одни из которых несут электрический заряд, другие — нет.

Нейтроны — единственные незаряженные частицы, образующиеся при любом радиоактивном преобразовании, с массой, равной массе протона. Поскольку эти частицы электронейтральны, они глубоко проникают в любое вещество, включая и живые ткани. Нейтроны представляют собой основные частицы, из которых построены ядра атомов.

При прохождении через вещество они взаимодействуют только с ядрами атомов, передают им часть своей энергии, а сами изменяют направление своего движения. Ядра атомов "выскакивают" из электронной оболочки и, проходя через вещество, производят ионизацию.

Электроны — легкие отрицательно заряженные частицы, существующие во всех стабильных атомах. Электроны очень часто используются во время радиоактивного распада вещества, и тогда их называют в-частицами. Их можно получать и в лабораторных условиях. Энергия, теряемая электронами при прохождении через вещество, расходуется на возбуждение и ионизацию, а также на образование тормозного излучения.

Альфа-частицы — ядра атомов гелия, лишенные орбитальных электронов и состоящие из двух протонов и двух нейтронов, сцепленных вместе. Имеют положительный заряд, относительно тяжелы, по мере прохождения через вещество производят ионизацию вещества большой плотности.

Обычно а-частицы испускаются при радиоактивном распаде естественных тяжелых элементов (радий, торий, уран, полоний и др.).

Заряженные частицы (электроны и ядра атомов гелия), проходя через вещество, взаимодействуют с электронами атомов, теряя при этом 35 и 34 эВ соответственно. При этом одна половина энергии расходуется на ионизацию (отрыв электрона от атома), а другая — на возбуждение атомов и молекул среды (перевод электрона на более удаленную от ядра оболочку).

Число ионизированных и возбужденных атомов, образуемых а-частицей на единице длины пути в среде, в сотни раз больше, чем у р-частицы (табл. 5.1).

Таблица 5.1. Пробег а- и в-частиц различной энергии в мышечной ткани

Энергия частиц, МэВ

Пробег, мкм

Энергия частиц, МэВ

Пробег, мкм

Энергия частиц, МэВ

Пробег, мкм

Это обусловлено тем, что масса а-частицы примерно в 7000 раз больше массы в-частицы, следовательно, при одной и той же энергии ее скорость значительно меньше, чем у в-частицы.

Испускаемые при радиоактивном распаде а-частицы обладают скоростью примерно 20 тыс. км/с, в то время как скорость в-частиц близка к скорости света и составляет 200…270 тыс. км/с. Очевидно, что чем меньше скорость частицы, тем больше вероятность ее взаимодействия с атомами среды, а следовательно, больше и потери энергии на единице пути в среде — значит, меньше пробег. Из табл. 5.1 следует, что пробег а-частиц в мышечной ткани в 1000 раз меньше пробега в-частиц той же энергии.

Когда ионизирующее излучение проходит сквозь живые организмы, оно передает свою энергию биологическим тканям и клеткам неравномерно. В результате, несмотря на небольшое количество поглощенной тканями энергии, некоторые клетки живой материи будут значительно повреждены. Суммарный эффект ионизирующего излучения, локализованного в клетках и тканях, представлен в табл. 5.2.

Таблица 5.2. Биологическое действие ионизирующего излучения

Характер воздей­ствия

Стадии воздействия

Эффект воздействия

Непосредственное действие излуче­ний

10 -24 … 10 -4 с 10 16 …10 8 с

Поглощение энергии. Началь­ные взаимодействия. Рентгенов­ское и у-излучение, нейтроны Электроны, протоны, а-частицы

10 -12 … 10 -8 с

Физико-химическая стадия. Пе­ренос энергии в виде ионизации на первичной траектории. Ионизованные и электронно-возбужденные молекулы

10 7 …10 5 с, несколько часов

Химические повреждения. При мое действие. Косвенное дей­ствие. Свободные радикалы, образующиеся из воды. Возбужде­ние молекулы до тепловою рав­новесия

Косвенное дей­ствие излучений

Микросе­кунды, се­кунды, ми­нуты, нес­колько часов

Биомолекулярные повреждении. Изменения молекул белков, нуклеиновых кислот под влиянием процессов обмена

Минуты, часы, недели

Ранние биологические и физио­логические эффекты. Биохими­ческие повреждения. Гибель клеток, гибель отдельных жи­вотных

Годы, столе­тия

Отдаленные биологические эф­фекты Стойкое нарушение фун­кций.

Ионизирующее излучение

Генетические мутации, действие на потомство. Со­матические эффекты: рак, лей коз, сокращение продолжительности жизни, гибель организма

В основе первичных радиационно-химических изменений молекул могут лежать два механизма: 1) прямое действие, когда данная молекула испытывает изменения (ионизацию, возбуждение) непосредственно при взаимодействии с излучением; 2) косвенное действие, когда молекула непосредственно не поглощает энергию ионизирующего излучения, а получает ее путем передачи от другой молекулы.

Известно, что в биологической ткани 60…70% массы составляет вода. Поэтому рассмотрим различие между прямым и косвенным действием излучения на примере облучения воды.

Допустим, что молекула воды ионизируется заряженной частицей, в результате чего она теряет электрон:

Н2О -> Н20+е — .

Ионизированная молекула воды реагирует с другой нейтральной молекулой воды, в результате чего образуется высокореактивный радикал гидроксила ОН":

Н2О+Н2О -> Н3О+ + ОН*.

Вырванный электрон также очень быстро передает энергию окружающим молекулам воды, при этом возникает сильно возбужденная молекула воды Н2О*, которая диссоциирует с обра зованием двух радикалов, Н* и ОН*:

Н2О+е- -> Н2О*Н’ + ОН’.

Свободные радикалы содержат неспаренные электроны и отличаются чрезвычайно высокой реакционной способностью. Время их жизни в воде не более 10-5 с. За это время они либо рекомбинируют друг с другом, либо реагируют с растворенным субстратом.

В присутствии растворенного в воде кислорода образуются и другие продукты радиолиза: свободный радикал гидропероксида НО2, пероксид водорода Н2О2 и атомный кислород:

Н*+ О2 -> НО2 ;
НО*2 + НО2 -> Н2О2 +20.

В клетке живого организма ситуация значительно более сложная, чем при облучении воды, особенно в том случае, если поглощающим веществом являются крупные и многокомпонентные биологические молекулы. В этом случае образуются органические радикалы D*, также отличающиеся крайне высокой реакционноспособностью. Располагая большим количеством энергии, они легко могут привести к разрыву химических связей. Именно этот процесс и происходит чаще всего в промежутке между образованием ионных пар и формированием конечных химических продуктов.

Кроме того, биологическое действие усиливается за счет влияния кислорода. Образующийся в результате взаимодействия свободного радикала с кислородом также высокореакционный продукт DО2* (D* + О2 -> DО2*) приводит к образованию новых молекул в облучаемой системе.

Получающиеся в процессе радиолиза воды свободные радикалы и молекулы окислителя, обладая высокой химической активностью, вступают в химические реакции с молекулами белка, ферментов и других структурных элементов биологической ткани, что приводит к изменению биологических процессов в организме. В результате нарушаются обменные процессы, подавляется активность ферментных систем, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму, — токсины. Это приводит к нарушению жизнедеятельности отдельных систем или организма в целом.

Индуцированные свободными радикалами химические реакции вовлекают в этот процесс многие сотни и тысячи молекул, не затронутых излучением. В этом состоит специфика действия ионизирующего излучения на биологические объекты. Никакой другой вид энергии (тепловой, электрической и др.), поглощенной биологическим объектом в том же количестве, не приводит к таким изменениям, какие вызывает ионизирующее излучение.

Нежелательные радиационные эффекты воздействия облучения на организм человека условно делятся на соматические (soma — по-гречески "тело") и генетические (наследственные).

Соматические эффекты проявляются непосредственно у самого облученного, а генетические — у его потомства.

За последние десятилетия человеком было создано большое количество искусственных радионуклидов, использование которых является дополнительной нагрузкой к естественному радиационному фону Земли и увеличивает дозу облучения людей. Но, направленные исключительно на использование в мирных целях, ионизирующие излучения полезны для человека, и сегодня трудно указать область знаний или народного хозяйства, не использующую радионуклиды или другие источники ионизирующих излучений. Уже к началу 21 века «мирный атом» нашел свое применение в медицине, промышленности, сельском хозяйстве, микробиологии, энергетике, освоении космоса и других сферах.

Виды излучения и взаимодействие ионизирующего излучения с веществом

Применение ядерной энергии стало жизненно важной необходимостью существования современной цивилизации и, в то же время, огромной ответственностью, поскольку использовать этот источник энергии необходимо максимально рационально и осторожно.

Полезная особенность радионуклидов

Благодаря радиоактивному распаду радионуклид «подает сигнал», определяя тем самым свое местоположение. Используя специальные приборы, фиксирующие сигнал от распада даже единичных атомов, ученые научились использовать эти вещества в качестве индикаторов, помогающих исследовать самые разные химические и биологические процессы, проходящие в тканях и клетках.

Виды техногенных источников ионизирующего излучения

Все техногенные источники ионизирующего излучения можно разделить на два вида.

  • Медицинские - используемые как для диагностики заболеваний (например, рентгеновский и флюорографический аппараты), так и для проведения радиотерапевтических процедур (например, радиотерапевтические установки для лечения рака). Также к медицинским источникам ИИ относятся радиофармацефтические препараты (радиоактивные изотопы или их соединения с различными неорганическими или органическими веществами), которые могут применяться как для диагностики заболеваний, так и для их лечения.
  • Промышленные - произведенные человеком радионуклиды и генераторы:
    • в энергетике (реакторы атомных электростанций);
    • в сельском хозяйстве (для селекционирования и исследования эффективности удобрений)
    • в оборонной сфере (топливо для атомоходов);
    • в строительстве (неразрушающий контроль металлоконструкций).

По статическим данным, объем производства радионуклидной продукции на мировом рынке в 2011 году составлял 12 млрд. долларов, а к 2030 году ожидается шестикратное увеличение этого показателя.

Излучения – неотъемлемая часть жизни современного человека. Исключить контакт с источниками, испускающими энергию в виде волн, практически невозможно. Дом, работа, транспорт, отдых – везде человек подвергается опасности. Сталкиваясь с разными видами излучений, живой организм получает больший или меньший урон здоровью. Однако самым опасным излучением для человека является радиация – ее влияние чаще всего приводит к летальному исходу и необратимым последствиям.

Радиоактивное излучение как самое опасное для человека

Радиационное излучение (радиация) – наиболее опасно для человека. Отличительная особенность – способность ионизировать вещества, находящиеся на длинном расстоянии, нарушая естественные процессы жизнедеятельности живых организмов.

Это единственный вид излучения, обладающий такой высокой проникающей способностью. В отличие от остальных видов электромагнитных волн, радиоактивное излучение испускает не только энергию, но и мельчайшие частицы (атомы или их осколки), способные пронизывать все предметы и живые организмы насквозь.

Своим воздействием радиация способна нарушить свойства таких материалов, как металл, не говоря о живых организмах. Человеческий организм функционирует при помощи электромагнитных импульсов, нарушить которые радиации не составит труда.

Существуют несколько видов радиации, в основе деления которых лежит вид частиц, испускаемых при излучении и способность ионизировать вещества:

  1. Радиация с альфа-частицами. Такое излучение не является особо опасным для человека, так как обладает небольшой испускающей способностью, составляющей 10 см. Размер излучаемых частиц настолько большой, что его может остановить воздух, листок бумаги, одежда. Для получения облучения нужно, чтобы радиоактивное вещество попало внутрь организма через рот или нос.

Попадание источника радиации в организм наносит наибольший урон: лучевая болезнь со смертельным исходом.

  1. Радиация с бета-частицами. Размер бета-частиц меньше предыдущих, поэтому проникающая способность увеличивается до 20 м. Однако способность ионизации в разы меньше, поэтому ее воздействие наносит меньше вреда живым организмам.
  2. Радиация с гамма-частицами. Гамма-частицами называют фотоны, испускаемые во время гамма-распада ядра. Частицы в нем входят в «противостояние», в результате чего появляется избыточная энергия, которая излучается. Проникающая способность такого излучения высокая и способна наносить вред на расстоянии до сотен метров.
  3. Рентгеновское излучение – самое опасное излучение для человека, так как вероятность контакта с источником в сотни раз выше. Оно схоже с гамма-излучением своей природой.

Получить облучение радиацией можно двумя способами:

  • внешним, когда радиация контактирует с внешними оболочками человека (в этом случае опасны гамма-лучи и рентгеновские);
  • внутренним, когда источник радиации попадает внутрь (в этом случае опасно альфа- и бета-излучение).

Наиболее опасным считается второй способ облучения, так как источник радиации находится внутри и излучает негативную энергию, соприкасаясь с внутренними тканями. От внешнего контакта с частицами электромагнитного поля защищает одежда, воздух, стены.

Все виды радиации сопровождаются ионизацией клеток организмов, что приводит к появлению свободных радикалов, отравляющих соприкасающиеся клетки. Специалисты выявили определенную закономерность воздействия радиации на организм человека:

  • первыми страдают кроветворные клетки, наступает анемия, лейкоз крови;
  • затем воздействию подвергаются органы желудочно-кишечного тракта, о чем свидетельствует тошнота, рвота, диарея;
  • поражаются половые клетки, функция размножения сводится к нулю, наступает половое бесплодие и онкологические заболевания (женщины менее подвержены удару, нежели мужчин);
  • поражаются органы зрения, возникает лучевая катаракта и слепота;
  • человек теряет волосяной покров;
  • увеличивается риск появления онкологии – рак молочных желез, рак щитовидной железы, рак легких;
  • генетические мутации (могут мутировать как гены, так и набор хромосом).

Опасность для детей возрастает в несколько раз. Чем младше ребенок, тем губительнее радиация воздействует на кости и головной мозг. Проявляется это в остановке роста костей, что приводит к патологиям, в головном мозге нарушаются процессы, приводящие к потере памяти, нарушению развития умственных способностей.

Для детей, находящихся в утробе матери, влияние особо пагубно в первом триместре. В этот период формируется кора головного мозга, а радиация нарушит этот процесс, и ребенок либо родится мертвым, либо с явными патологиями.

Радиация – разновидность электромагнитного излучения. Имеет еще несколько видов излучений, способных приносить вред здоровью человека: радиоволны, ультрафиолетовое, инфракрасное, лазерное.

Радиоволны и их влияние на человека

Радиоволны представляют собой низкочастотные волны (до 6 тыс. ГГц). Источников их излучения много: мобильные телефоны, радио, различные беспроводные устройства (Bluetooht), радионяни.

Человек и радиоволны могут существовать рядом долгие годы. Низкая приникающая способность радиоволн обеспечивает контакт только с кожными покровами. Они могут нагреваться, что чревато для человека повышенным потоотделением.

Смертельную угрозу радиоволны несут людям с проблемами сердца, у которых установлен сердечный кардиостимулятор. Этот прибор чувствителен к различным колебаниям в виде волн.

Инфракрасное излучение и его вред

Инфракрасное излучение – имеет электромагнитную природу, ему присущи волны длиной 0,76 мкм. Их основным источником является солнце, благодаря этой особенности солнце не только светит, но и греет. Все живые существа также излучают инфракрасные лучи, но невидимые человеческому глазу.

Коротковолновые ИК-лучи пагубно влияют на человека, так как способны существенно нагревать кожные покровы. Способность проникать на несколько сантиметров под кожу может спровоцировать ожоги, волдыри, солнечный удар с последующей госпитализацией.

Большую угрозу ИК-свет несет для глаз. Длительное воздействие на сетчатку приводит к судорогам, водно-солевому дисбалансу, катаракте.

Оптическое излучение и его влияние на человека

Оптическое или лазерное излучение – характеризуется его видимостью в виде луча, а также атомной природой происхождения. Лазерное излучение схоже с природой света, но свет на улице – явление естественное, а лазер – вынужденное свечение.

Длинные лазерные волны не способны нанести вред живым существам, но короткие высокочастотные волны при длительном воздействии угрожают:

  • поражением органов зрения (катаракта, поражение сетчатки, помутнение хрусталика, отек век);
  • перегревом кожных покровов, их покраснением, разрушением внутренних слоев эпидермиса, отмиранием участков кожи;
  • расстройством сердечно-сосудистой и центральной нервной систем.

Ультрафиолетовое излучение и его негативное влияние

Ультрафиолетовое излучение – тесно связано с инфракрасным излучением. Особенностью УФ-лучей является химическая реакция, которая происходит во время излучения. Основным источником УФ-импульсов является солнце, но от его пагубных лучей защищает озоновый слой атмосферы.

Опасность представляют приборы в быту: сварочный аппарат, солярий, ультрафиолетовые лампы.

Длительное воздействие коротковолновых УФ-волн приводит не только к загару кожи, но и к ее травматизму. Способность проникать в глубокие слои кожи влечет за собой ожоги, и мутагенез (нарушение в клетках кожи на генном уровне). Как результат – онкологическое заболевание под названием меланома с пессимистическим прогнозом.

Важно! Глаза очень чувствительны к ультрафиолету, столкновение со средневолновым излучением приводит к электроофтальмии, то есть ожогу сетчатки.

Электромагнитные поля разных частот взаимодействуют с человеком постоянно и приносят ущерб в той или иной мере. Однако только радиация проникает в клетки организма незаметно, вызывая самые серьезные и необратимые последствия: мутация, генетические нарушения, онкологические опухоли. Эти последствия могут возникать не сразу, а спустя годы, ведь вывести радионуклиды из организма – дело многих лет.

Именно поэтому – это радиация, своевременно защититься от которой порой невозможно.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «api-clinic.ru» — Центр естественной медицины