Циклические формы моноз, мутаротация. Циклические формы и таутомерия моносахаридов Моносахариды могут быть в циклической форме

Альдозы проявляют далеко не все свойства, характерные для альдегидов. Так, они не дают реакции с фуксинсернистой кислотой и очень медленно реагируют с гидросульфитом натрия. В то же время наблюдается повышенная активность одной из гидроксильных групп, количество изомеров альдоз в два раза больше, чем предсказывает формула Фишера, кроме того, для альдоз характерно явление мутаротации – изменение угла вращения свежеприготовленных растворов.

Для объяснения этих противоречий в конце XIX в. была высказана мысль, что моносахариды могут существовать не только в линейной форме, но и в форме циклических внутренних полуацеталей, не содержащих карбонильной группы. В дальнейшем было доказано, что для моносахаридов характерна циклоцепная таутомерия : в кристаллическом состоянии они имеют циклическое строение, а в растворах существуют в виде циклических и открытоцепных форм, находящихся в динамическом равновесии.

Образование циклических форм моносахаридов происходит в результате реакции внутримолекулярного присоединения одной из гидроксильных групп по карбонильной группе. Наиболее устойчивыми являются пяти − и шестичленные циклы. Поэтому при образовании циклических форм углеводов образуются фуранозные (пятичленный) и пиранозные (шестичленный) циклы. Рассмотрим образование циклических форм на примерах глюкозы и рибозы.

Глюкоза при циклизации образует преимущественно пиранозный цикл. Пиранозный цикл состоит из 5 атомов углерода и 1 атома кислорода. При его образовании в присоединении участвует гидроксильная группа пятого (С 5) атома углерода.

Образование циклических форм моносахаридов обусловлено взаимодействием альдегидной группы с гидроксилом, находящимся у С 5 , реже у С 4 − атома: Образовавшееся соединение внутренний циклический полуацеталь. Поэтому циклические формы моноз называют полуацетальными.

В результате замыкания цикла в молекуле появляется новый асимметрический центр – это приводит к удвоению числа изомеров:

Более наглядно строение циклических форм моносахаридов можно представить с помощью «перспективных» формул Хеуорса:

Группа −ОН при первом углеродном атоме в циклических формах называетя гликозидным гидроксилом . Он гораздо реакционноспособнее остальных гидроксильных групп, легко реагирует со спиртами или со второй молекулой моносахарида с образованием гликозидов.

Переход от проекционных формул Фишера к формулам Хеуорса осуществляется по следующим правилам:



1) В формуле Фишера производится четное число перестановок заместителей у атома углерода, чья гидроксильная группа участвует в образовании циклического полуацеталя. Перестановка осуществляется таким образом, чтобы данная OH−группа располагалась на одной вертикали с карбонильной группой и находилась внизу.

Например, в образовании пиранозного цикла D−глюкозы участвует OH−группа при С 5 . Осуществляем две перестановки и записываем циклическую форму в проекции Фишера:

Аналогичным образом поступаем в случае образования фуранозного цикла. Теперь в образовании цикла участвует OH−группа при С 4:

2) В зависимости от структуры цикла берется соответствующая «заготовка»:

Все заместители, находящиеся в фишеровской проекции справа от линии углеродной цепи, располагаются под плоскостью цикла; соответственно заместители, находящиеся слева - над плоскостью.

Отметим, что у пиранозных форм моносахаридов D−ряда группа-CH 2 OH всегда располагается над плоскостью цикла. У a−аномеров гликозидная OH−группа располагается под плоскостью цикла, а у
b−аномера - над плоскостью.

Названия циклических форм строятся следующим образом: сначала указывают положение гликозидной группы (a− или b−), затем принадлежность сахарида к стереохимическому ряду (D− или L−), далее в корень тривиального названия сахарида вставляют смысловую часть названия цикла (−фуран− или −пиран−), заканчивая название суффиксом − оза.

В случаях, когда аномеризация не уточняется или речь идет о равновесной смеси аномеров, положение гликозидной группы обозначается волнистой линией:

Мутаротация

Фуранозные и пиранозные циклы, а также a− и b−аномеры обладают различной термодинамической устойчивостью. Однако в растворе моносахариды существуют как в открытой форме, так и во всех возможных циклических формах. Соотношение этих форм зависит от строения открытой формы моносахарида, природы растворителя и других факторов. В целом пиранозные циклы более устойчивы, чем фуранозные, а в полярных растворителях более устойчивы b−аномеры благодаря экваториальной конформации заместителей.



В водном растворе возможны взаимные превращения фуранозных циклов в пиранозные, а a−аномеров в b−аномеры и наоборот. Такое динамическое равновесие между открытой и циклическими формами моносахарида называется цикло−оксо−таутомерией. Взаимопревращение a− и b−аномеров называется аномеризацией .

Изменение угла вращения свежеприготовленных растворов сахаров, связанное с переходом одних таутомерных форм в другие до наступления состояния равновесия, называется мутаротацией.

Важнейшие моносахариды

Наиболее распространенным моносахаридом является D-глюкоза. Ее формулу запомнить очень легко: это альдогексоза, в формуле Фишера которой все гидроксильные группы, за исключением одной - второй сверху (у C-3) располагаются справа.

D-манноза D-глюкоза D-галактоза

Альдогексозу, отличающуюся от D-глюкозы расположением первой гидроксильной группы (у C-2), называют D-маннозой, а третьей (у C-4) - D-галактозой. D-Фруктоза отличается от D-глюкозы тем, что она кетоза, а не альдоза.

D-фруктоза D-арабиноза L-арабиноза

Кроме гексоз большое значение имеют и пентозы. D-Арабиноза отличается от D-глюкозы как бы отсутствием С-1. В природе распространена L-арабиноза, являющаяся зеркальным изображением D-арабинозы. Она содержится в вишневом клее. Формулу ксилозы можно вывести из формулы глюкозы удалением последнего атома углерода. В формуле D-рибозы, входящей в состав нуклеиновых кислот, все гидроксильные группы располагаются справа. В состав нуклеиновых кислот входит также 2-дезокси-D-рибоза, отличающаяся от D-рибозы отсутствием гидроксильной группы у второго атома углерода.

Упр. 2. Изобразите проекционные формулы Фишера следующих гексоз D-ряда: глюкоза, манноза, галактоза и фруктоза.

D-ксилоза D-рибоза 2-дезокси-D-рибоза

Эпимеризация

При действии оснований, например на глюкозу, водород -углеродного атома по отношению к карбонильной группе переходит к кислороду этой группы, в результате чего образуется енольная форма. При этом исчезает хиральность второго углеродного атома. При обратном превращении возвращающийся протон может подходить с любой из сторон плоскости, что будет приводить как к образованию исходной D-глюкозы, так и нового углевода D-маннозы, т.е. возникает изомер с новым положением гидроксильной группы. Кроме того, возникает еще один углевод с новым расположением карбонильной группы. Такое превращение называется эпимеризацией .

D-глюкоза енольная форма(ендиол) D-манноза

D-фруктоза

Два стереоизомера, содержащие несколько хиральных центров, но различающиеся конфигурацией только одного из центров, называют эпимерами. Два углевода, отличающиеся различным положением гидроксильной группы называются эпимерами. Образование равновесной смеси трех углеводов может проходить при обработке основаниями любого из этих трех углеводов.

Упр. 3. Какие моносахариды называют эпимерными? Напишите проекционные формулы моноз эпимерных D-маннозе.

Циклические формы моноз, мутаротация

Характерной особенностью гидроксиальдегидов и гидроксикетонов, к которым относятся монозы, является их склонность к образованию циклических полуацеталей и полукеталей; особенно легко это происходит, если образующиеся циклы состоят из 5 и 6 атомов, включая кислород.

5-гидроксипентаналь (открытая форма) (циклическая форма)

Открытые и циклические формы углеводов находятся между собой в равновесии, достигающемся в результате таутомерного превращения. Такой вид таутомерии называют кольчато-цепной таутомерией.

Размер цикла указывается путем замены родового суффикса моноз -оза на -пираноза - для шестичленных циклов и -фураноза для пятичленных циклов. Названия циклов происходят от названий соответствующих кислородсодержащих гетероциклов:

фуран пиран

В отличие от обычных альдегидов альдозы не реагируют с бисульфитом натрия и не дают красного окрашивания с фуксинсерной кислотой. Это объясняется тем, что альдозы существуют преимущественно в циклических формах.

Глюкоза обычно дает шестичленный полуацеталь и, следовательно, для этого используется гидроксильная группа, находящаяся при С-5. При образовании циклической формы С-1 становится стереоцентром: появляюшаяся у него полуацетальная гидроксильная группа (ее называют гликозидной ) может располагаться как слева, так и справа:


D-глюкопираноза D-глюкоза -D-глюкопираноза

(формула Толленса) (формула Фишера) (формула Толленса)

Циклические формы альдоз являются полуацеталями. Они образуются путем внутримолекулярного взаимодействия гидроксильной и карбонильной групп. При этой реакции образуется новый стереоцентр у С-1 атома. Циклические формы моноз представляют собой диастереомеры. Такого рода диастереомеры называют аномерами. Полуацетальный атом углерода называют аномерным атомом. Аномеры обозначают и -аномерами в зависимости от расположения гидроксильной группы у С-1 атома. У -аномера гликозидный гидроксил располагается по ту же сторону, что и у предпоследнего атома углерода (в D-ряду справа), а у -аномера - по другую (в D-ряду - слева). Полное название обоих аномеров D-глюкозы будет соответственно - или -D-глюкопираноза.

В конформационной формуле -аномера D-глюкопиранозы все гидроксильные группы и группа -СН 2 ОН занимают экваториальное положение. Формула -аномера отличается аксиальным расположением аномерного гидроксила. Оба аномера

D-глюкозы в кристаллическом состоянии вполне устойчивы и каждый из них может быть выделен в чистом виде, оба они вращают плоскость поляризованного света.

Для обозначения циклических форм в настоящее время в химии углеводов чаще применяют кресловидные формулы, аналогичные тем, которыми обозначают циклогексан и его производные.


Т.пл. 146 о С Т. пл. 150 о С

D-глюкоза -D-глюкопираноза -D-глюкопираноза

20 D +112 o +19 O

D-(+)-Глюкоза кристаллизуется из воды в виде -D-глюкопиранозы, а из пиридина - в виде -D-глюкопиранозы. В водном растворе устанавливается равновесие, при котором имеется 36% -D-глюкопиранозы и 64% -D-глюкопиранозы, что дает для удельного вращения раствора усредненное значение 20 D = +52,5 O .

Это явление называется мутаротацией . Угол вращения плоскости поляризованного света раствора во время установления равновесия между изомерами постепенно изменяется. Явление мутаротации объясняется тем, что при расциклизации исчезает стереоцентр у С-1 (превращение в карбонильную группу), а последующая циклизация ведет к образованию обоих аномеров. Мутаротации подвергаются лишь сахара со свободным гликозидным гидроксилом, то есть способные к кольчато-цепной таутомерии.

Если один из аномеров перевести в раствор, то каждый из них превратится в равновесную смесь аномеров с удельным оптическим вращением +52,5 о, состоящую на 36% из -аномера и на 64% из -аномера. Концентрация открытой формы, через которую взаимопревращаются аномеры, составляет лишь 0,024%.

Иногда циклические формы изображают без уточнения ориентации гликозидного гидроксила:

D-глюкопираноза

Поскольку D-манноза отличается от D-глюкозы расположением гидроксильной группы лишь у С-2, а D-галактоза - у С-4, то конформационные формулы этих моноз легко выводятся из конформационных формул соответствующих аномеров глюкозы:

D-маннопираноза -D-галактопираноза

Предпочтительность аксиального положения гидроксильной группы называется аномерным эффектом .

Упр. 4. В отличие от глюкозы D-манноза на 69% состоит из -аномера и на 31% из -аномера. Напишите формулы обоих аномеров маннопиранозы.

Упр.5. Гексозу, в формуле Фишера которой все гидроксильные группы

располагаются справа, называют D-аллозой. Изобразите открытую и циклическую формулы D-аллозы.

Кроме конформоционных формул для циклических форм углеводов часто пользуются упрощенными циклическими формулами по Хейворту (Хеуорсу) (Haworth). Переход от конформационных формул к формулам Хейворта очень прост: цикл уплощают, связи с атомом углерода заместителей изображают вертикально.

конформационная формула формула Хеуорса

D-глюкопиранозы -D-глюкопиранозы

Формулы Хеуорса остальных альдогексоз легко выводятся из формулы

D-глюкопиранозы. Все, что в формуле Фишера пишется справа в циклических формулах, пишется снизу и наоборот:

D-фруктоза -D-фруктофураноза -D-глюкопираноза

Если мы хотим перевернуть циклическую формулу с выносом из плоскости рисунка, то следует все заместители поменять местами.

D-фруктофураноза

Упр. 6. Назовите следующие монозы:


Упр. 7. Напишите конформационные формулы -D-глюкопиранозы, -D-глюкопи-ранозы, -D-фруктофуранозы, -D-галактопиранозы и -D-маннопиранозы.

Упр. 8. Гексоза, отличающаяся от глюкозы лишь расположением альдегидной группы, называется гулозой. Напишите формулу этой гексозы и в ее названии укажите, к какому ряду (D или L) она относится.

Упр. 9. Напишите перспективные формулы по Хеуорсу -D-глюкопиранозы, -D-глюкопиранозы, -D-фруктофуранозы, -D-галактопиранозы и -D-маннопиранозы.

Упр.10. Какое явление называют мутаротацией? Объясните на примере D-маннозы, учитывая, что оба аномера в равновесной системе находятся в пиранозной форме. Как можно обнаружить мутаротацию?

    Моносахариды: классификация; стереоизомерия, D– и L–ряды; открытая и циклические формы на примере D–глюкозы и 2–дезокси–D–рибозы, цикло–оксотаутомерия; мутаротация. Представители: D–ксилоза, D–рибоза, D–глю­коза, 2–дезокси–D–рибоза, D–глюкозамин.

Углеводы - гетерофункциональные соединения, являющиеся альдегидо- или кетономногоатомными спиртами или их производными. Класс углеводов включает разнообразные соединения - от низкомолекулярных, содержащих от 3 до 10 атомов углерода до полимеров с молекулярной массой в несколько миллионов. По отношению к кислотному гидролизу и по физико-химическим свойствам они подразделяются на три большие группы: моносахариды, олигосахариды и полисахариды .

Моносахариды (монозы) - углеводы, неспособные подвергаться кислотному гидролизу с образованием более простых сахаров. Монозы классифицируют по числу углеродных атомов, характеру функциональных групп, стереоизомерным рядам и аномерным формам. По функциональным группам моносахариды подразделяются на альдозы (содержат альдегидную группу) и кетозы (содержат карбонильную группу).


По числу углеродных атомов в цепи: триозы (3), тетрозы (4), пентозы (5), гексозы (6), гептозы (7) и т. д. до 10. Наиболее важное значение имеют пентозы и гексозы. По конфигурации последнего хирального атома углерода моносахариды делятся на стереоизомеры D- и L-ряда. В обменных реакциях в организме принимают участие, как правило, стереоизомеры D-ряда (D-глюкоза, D-фруктоза, D-рибоза, D-дезоксирибоза и др.)

В целом название индивидуального моносахарида включает:

Префикс, описывающий конфигурацию всех асимметрических атомов углерода;

Цифровой слог, определяющий число атомов углерода в цепи;

Суффикс -оза - для альдоз и -улоза - для кетоз, причем локант оксо- группы указывают только в том случае, если она находится не при атоме С-2.

Строение и стереоизомерия моносахаридов.

Молекулы моносахаридов содержат несколько центров хиральности, поэтому существует большое число стереоизомеров, соответствующих одной и той же структурной формуле. Так, число стереоизомеров альдопентоз равно восьми (2 n , где n = 3 ), среди которых 4 пары энантиомеров. У альдогексоз будет уже 16 стереоизомеров, т. е. 8 пар энантиомеров, так как в их углеродной цепи содержится 4 асимметрических атома углерода. Это аллоза, альтроза, галактоза, глюкоза, гулоза, идоза, манноза, талоза. Кетогексозы содержат по сравнению с соответствующими альдозами на один хиральный атом углерода меньше, поэтому число стереоизомеров (2 3) уменьшается до 8 (4 пары энантиомеров).

Относительная конфигурация моносахаридов определяется по конфигурации наиболее удаленного от карбонильной группы хирального атома углерода путем сравнения с конфигурационным стандартом - глицериновым альдегидом. При совпадении конфигурации этого атома углерода с конфигурацией D-глицеринового альдегида моносахарид в целом относят к D-ряду. И, наоборот, при совпадении с конфигурацией L-глицеринового альдегида, считают, что моносахарид принадлежит к L-ряду. Каждой альдозе D-ряда соответствует энантиомер L-ряда с противоположной конфигурацией всех центров хиральности.

(! ) Положение гидроксильной группы у последнего центра хиральности спра­ва свидетельствует о принадлежности моносахарида к D-ряду, слева - к L-ряду, т. е. так же, как и в стереохимическом стандарте - глицерино­вом альдегиде.

Природная глюкоза является стереоизомером D -ряда . В равновесном состоянии растворы глюкозы обладают правым вращением (+52,5º), поэтому глюкозу иногда называют декстрозой. Название виноградный сахар глюкоза получила в связи с тем, что ее больше всего содержится в соке винограда.

Эпимерами называются диастереомеры моносахаридов, различающиеся конфигурацией только одного асимметрического атома углерода. Эпимером D-глюкозы по С 4 является D-галактоза, а по С 2 - манноза. Эпимеры в щелочной среде могут переходить друг в друга через ендиольную форму, и этот процесс называется эпимеризацией .

Таутомерия моносахаридов. Изучение свойств глюкозы показало:

1) спектрах поглощения растворов глюкозы отсутствует полоса, соответствующая альдегидной группе;

2) растворы глюкозы дают не все реакции на альдегидную группу (не взаимодействуют с NaHSО 3 и фуксинсернистой кислотой);

3) при взаимодействии со спиртами в присутствии «сухого» НСl глюкоза присоединяет, в отличие от альдегидов, только один эквивалент спирта;

4) свежеприготовленные растворы глюкозы мутаротируют в течение 1,5–2 часов меняют угол вращения плоскости поляризованного света.

Циклические формы моносахаридов по химической природе являются циклическими полуацеталями , которые образуются при взаимодействии альдегидной (или кетонной) группы со спиртовой группой моносахарида. В результате внутримолекулярного взаимодействия (А N механизм ) электрофильный атом углерода карбонильной группы атакуется нуклеофильным атомом кислорода гидроксильной группы. Образуются термодинамически более устойчивые пятичленные (фуранозные ) и шестичленные (пиранозные ) циклы. Образование этих циклов связано со способностью углеродных цепей моносахаридов принимать клешневидную конформацию.

Представленные ниже графические изображе­ния циклических форм называются формулами Фишера (можно встретить и название «формулы Колли-Толленса»).


В этих реакциях С 1 атом из прохирального, в результате циклизации, становится хиральным (аномерный центр ).

Стереоизомеры, отличающиеся конфигурацией атома С-1 альдоз или С-2 кетоз в их циклической форме, называются аномерами , а сами атомы уг­лерода называются аномерным центром .

Группа ОН, появившаяся в результате циклизации, является полуацетальной. Она называется еще гликозидной гидроксильной группой. По свойствам она значительно отличается от остальных спиртовых групп моносахарида.

Образование дополнительного хирального центра приводит к возникновению новых стереоизомерных (аномерных) α- и β-форм. α-Аномерной формой называется такая, у которой полуацетальный гидроксил находится с той же стороны, что и гидроксил у последнего хирального центра, а β-формой - когда полуацетальный гидроксил находится по другую сторону, чем гидроксил у последнего хирального центра. Образуется 5 взаимно друг в друга переходящих таутомерных форм глюкозы. Такой вид таутомерии называется цикло-оксо-таутомерией . Таутомерные формы глюкозы находятся в растворе в состоянии равновесия.

В растворах моносахаридов преобладает циклическая полуацетальная форма (99,99 %) как более термодинамически выгодная. На долю ациклической формы, содержащей альдегидную группу, приходится менее 0,01 %, в связи с этим не идет реакция с NaHSO 3 , реакция с фуксинсернистой кислотой, а спектры поглощения растворов глюкозы не показывают наличия полосы, характерной для альдегидной группы.

Таким образом, моносахариды - циклические полуацетали альдегидо- или кетоно- многоатомных спиртов, существующие в растворе в равновесии со своими таутомерными ациклическими формами.

У свежеприготовленных растворов моносахаридов наблюдается явление мутаротации - изменения во времени угла вращения плоскости поляризации света. Аномерные α- и β-формы имеют различный угол вращения плоскости поляризованного света. Так, кристаллическая α,D-глюкопираноза при растворении ее в воде имеет начальный угол вращения +112,5º, а затем он постепенно уменьшается до +52,5º. Если растворить β,D-глюкопиранозу, ее начальный угол вращения + 19,3º, а затем он увеличивается до +52,5º. Это объясняется тем, что в течение некоторого времени устанавливается равновесие между α- и β-формами: 2/3 β-формы → 1/3 α-формы.

Предпочтительность образования того или другого аномера во многом определяется их конформационным строением. Наиболее выгодной для пиранозного цикла является конформация кресла , а для фуранозного цикла - конверта или твист -конформация. Наиболее важные гексозы - D-глюкоза, D-галактоза и D-манноза - существуют исключительно в конформации 4 С 1 . Более того, D-глюкоза из всех гексоз содержит максимальное число экваториальных заместителей в пиранозном цикле (а ее β-аномер - все).

У β-конформера все заместители находятся в наиболее выгодном экваториальном положении, поэтому этой формы в растворе 64 %, а α-конформер имеет аксиальное расположение полуацетального гидроксила. Именно α-конформер глюкозы содержится в организме человека и участвует в процессах метаболизма. Из β-конформера глюкозы построен полисахарид - клетчатка.

Формулы Хеуорса . Циклические формулы Фишера удачно описывают конфигурацию моносахаридов, однако они далеки от реальной геометрии мо­лекул. В перспективных формулах Хеуорса пиранозный и фуранозный циклы изображают в виде плоских правильных многоугольников (соответственно шести- или пятиугольника), лежащих горизонтально. Атом кислорода в цикле располагается в удалении от наблюдателя, причем для пираноз - в правом углу.

Атомы водорода и заместители (главным образом, группы СH 2 OH, если таковая имеется, и он) располагают над и под плоскостью цикла. Символы атомов углерода, как это принято при написании формул циклических соеди­нений, не показывают. Как правило, опускают и атомы водорода со связями к ним. Связи С-С, находящиеся ближе к наблюдателю, для наглядности иног­да показывают жирной линий, хотя это не обязательно.

Для перехода к формулам Хеуорса от циклических формул Фишера по­следнюю необходимо преобразовать так, чтобы атом кислорода цикла распо­лагался на одной прямой с атомами углерода, входящими в цикл. Если преобразованную формулу Фишера расположить гори­зонтально, как требует написание формул Хеуорса, то заместители, находив­шиеся справа от вертикальной линии углеродной цепи, окажутся под плоско­стью цикла, а те, что были слева, - над этой плоскостью.

Описанные выше преобразования показывают также, что полуацеталь­ный гидроксил у α-аномеров D-ряда находится под плоскостью цикла, у β-аномеров - над плоскостью. Кроме того, боковая цепь (при С-5 в пиранозах и при С-4 в фуранозах) располагается над плоскостью цикла, если она свя­зана с атомом углерода D-конфигурации, и снизу, если этот атом имеет L-кон­фигурацию.

Представители .

D -Ксилоза - «древесный сахар», моносахарид из группы пентоз с эмпирической формулой C 5 H 10 O 5 , принадлежит к альдозам. Содержится в эмбрионах растений в качестве эргастического вещества, а также является одним из мономеров полисахарида клеточных стенок гемицелюллозы.

D–Рибоза представляет собой вид простых сахаров, образующих углеводный остов РНК, управляя, таким образом, всеми жизненными процессами. Рибоза также участвует в производстве аденозинтрифосфорной кислоты (АТФ) и является одним из ее структурных компонентов.

2–Дезокси–D–рибоза - компо­нент дезоксирибонуклеиновых кислот (ДНК). Это исторически сложившееся название не является строго номенклатурным, так как в молекуле содержатся только два центра хиральности (без учета атома С-1 в циклической форме), поэтому это соединение с равным правом может быть названо 2-дезокси-D-арабинозой. Более правильное название для открытой формы: 2-дезокси-D-эритро-пентоза (D-эритро-конфигурация выделена цветом).

D–глюкозамин вещество, вырабатываемое хрящевой тканью суставов, является компонентом хондроитина и входит в состав синовиальной жидкости.

    Моносахариды: открытая и циклические формы на примере D–галактозы и D–фруктозы, фуранозы и пиранозы; – и β–аномеры; наиболее устойчивые конформации важнейших D–гексопираноз. Представители: D–галактоза, D–манноза, D–фруктоза, D–галактозамин (вопр. 1).

Таутомерные формы фруктозы образуются так же, как и таутомерные формы глюкозы, по реакции внутримолекулярного взаимодействия (А N). Электрофильным центром является атом углерода карбонильной группы у С 2, а нуклеофилом - кислород ОН-группы у 5 или 6 атома углерода.

Представители.

D–галактоза в животных и растительных организмах, в том числе в некоторыхмикроорганизмах. Входит в состав дисахаридов - лактозы и лактулозы. При окислении образует галактоновую, галактуроновуюи слизевую кислоты.

D–манноза компонент многих полисахаридов и смешанных биополимеров растительного, животного и бактериального происхождения.

D–фруктоза - моносахарид, кетогексоза, в живых организмах присутствует исключительно D-изомер, в свободном виде - почти во всех сладких ягодах и плодах - в качестве моносахаридного звена входит в состав сахарозы и лактулозы.

"

Известно, что альдегиды и кетоны реагируют со спиртами, образуя полуацетали и кетали. Циклические полуацетали образуются особенно легко. Для этого необходимыми условиями являются: 1) гидроксил и карбонильная группа должны быть частями одной молекулы; 2) при их взаимодействии может образоваться пяти- или шестичленное кольцо.
Например, 4-гидроксипентаналь образует пятичленный циклический полуацеталь. При этом создается новый стереоцентр при углероде С-1 (все четыре заместителя при С-1 разные):

Подобным образом 5-гидроксигексаналь формирует шестичленный циклический полуацеталь, в котором также генерируется новый стереоцентр при С-1:

Гидроксильная и карбонильная группы содержатся в одной молекуле моносахаридов, поэтому моносахариды существуют почти исключительно в форме циклических полуацеталей.
Циклические проекции Фишера. Размер полуацетального кольца моносахарида сравнивают с гетероциклическими молекулами – пираном и фураном:

Шестичленные полуацетальные кольца обозначают словом «пиран», а пятичленные – «фуран».
При кристаллизации из этанола D-глюкоза дает -D-глюкопиранозу, t пл = 146 °С, удельное оптическое вращение D = +112,2°. Кристаллизация из водного этанола дает -D-глюкопиранозу, t пл = 150 °С, D = +18,7°. Эти - и -изомеры – шестичленные циклические полуацетали – образуются при реакции гидроксила ОН при углероде С-5 с карбонильной группой в положении 1. Новый стереоцентр, возникающий при получении полуацеталя, называют аномерным углеродом . Образующиеся таким образом диастереомеры имеют специальное название – аномеры . Конфигурация аномерного углерода обозначается приставкой , когда его гидроксильная группа находится с той же стороны фишеровской проекции, что и ОН-группа при стереоцентре с высшим номером. При противоположной ориентации этих гидроксилов конфигурация аномерного углерода – .

По данным метода ЯМР 13 С D-глюкозы в водном растворе, существуют: -пираноза (38,8%),
-пираноза (60,9%), -фураноза (0,14%), -фураноза (0,15%), гидрат открытой линейной формы (0,0045%).
Приводим - и -формы глюкофуранозы в сравнении с циклическими формами фруктозы –
-фруктофуранозы и -фруктофуранозы.

В альдозах замыкание цикла возможно за счет 1-го (альдегидного) углерода и гидроксила при 4-м (или 5-м) атоме С, а в кетозах – за счет 2-го (карбонильного) углерода и гидроксила в 5-м или 6-м положении цепи.

Формулы Хеуорса. Альтернативный способ изображения циклических структур моносахаридов известен как проекции Хеуорса и назван так в честь английского химика Уолтера Хеуорса (нобелевский лауреат, 1937 г.). В формулах Хеуорса пяти- и шестичленные циклические полуацетали представляют в виде плоских пяти- или шестиугольников, расположенных как бы перпендикулярно плоскости листа бумаги. Группы, присоединенные к углеродам кольца, располагают над или под плоскостью кольца и параллельно плоскости листа бумаги. В формулах Хеуорса аномерный углерод обычно записывают справа, а полуацетальный кислород – сзади него. Проекции Хеуорса - и -пиранозных форм D-глюкозы показаны ниже.

УПРАЖНЕНИЯ.

1. Что означает понятие «циклические формы углеводов»?

2. Приведите структурные и проекционные формулы Фишера для: а) триозы; б) тетрозы;
в) пентозы.

3. Как по химическим формулам различить L- и D-изомеры (на примере эритрозы)?

4. Укажите ацетальные связи и асимметрические атомы углерода (стереоцентры) в соединениях:

5. Напишите структурные формулы гетероциклов пирана и фурана, указывая каждый атом.

6. Составьте схемы образования циклических полуацетальных форм из:
а) D-треозы; б) D-рибозы (фуранозная и пиранозная формы).

7. Преобразуйте графические формулы соединений а)–в) в фишеровские проекции и сделайте отнесение этих проекций к D- или L-глицеральдегиду:

8. Сколько возможно кетотетроз? Для каждой нарисуйте проекции Фишера.

9. Составьте формулы Хеуорса:

1) -D-глюкопиранозы; 2) -D-глюкофуранозы.

Ответы на упражнения к теме 2

Урок 34

1. Циклические формы углеводов содержат цикл с кислородом в кольце. Обычно это циклический полуацеталь. В его молекуле нет свободной альдегидной группы, зато имеется ацетальная связь. Например, для эритрозы:

3. Чтобы по химическим формулам различить D- и L-изомеры эритрозы, следует представить их в виде проекций Фишера. Ориентация гидроксила вправо при высшем стереоцентре С*-3 означает
D-изомер. Направление группы НО влево от С*-3 свойственно L-изомеру:

4. Ацетальные связи отмечены стрелкой (), а стереоцентры – звездочкой (*):

в) две последовательные перестановки заместителей не изменяют конфигурацию (D или L) при стереоцентре:

8. Возможны две энантиомерные кетотетрозы, для которых проекции Фишера следующие:

9. Формулы Хеуорса:

Диастереомеры – стереоизомеры, молекулы которых не являются зеркальным отображением друг друга.

Образование циклических форм связано со способностью углеродной цепи принимать выгодную клешневидную конформацию и с дальнейшим взаимодействием внутри одной молекулы карбонильной группы с гидроксильной группой. Это взаимодействие приводит к образованию циклического полуацеталя. Устойчивыми являются 5- и 6-членные циклы. Для их изображения приняты формулы Хеуорса.

5-членный цикл (фуранозный)

6-членный цикл (пиранозный)

Для альдоз образование фуранозного цикла происходит при взаимодействии карбонильного звена С 1 с гидроксигруппой С 4 , а пиранозный цикл образуется между С 1 и С 5 .

Для кетоз , т.е. фруктозы, в образовании цикла участвует карбонильное звено С 2 и гидроксигруппа С 5 , что приводит к образованию фуранозы, или гидроксильной группы С 6 , что приводит к образованию пиранозы.

Нумерацию цепи в формулах Хеуорса ведут от крайнего правого положения по часовой стрелке. Последнее звено -СН 2 ОН выносят под плоскость цикла, что является дополнительным D-признаком по Хеуорсу.

Представим клешневидную конформацию молекулы D-рибозы.


В бывшем карбонильном звене в результате внутримолекулярного взаимодействия возникает дополнительный центр хиральности, за счет образования полуацетального гидроксила, который может располагаться над или под плоскостью цикла. Его положение определяет вид аномера моносахарида. Если полуацетальный гидроксил расположен под плоскостью цикла, то мы имеем a-аномер . Если полуацетальный гидроксил расположен над плоскостью цикла – b-аномер .

a-аномер b-аномер

Таким образом, в растворе моносахариды присутствуют в открытых и циклических формах, способных свободно переходить друг в друга. Такой вид изомерии называется цикло-оксо-таутомерией , а изомеры, взаимно переходящие друг в друга и находящиеся в состоянии динамического равновесия, называются таутомерами .


Химические свойства моносахаридов

Исходя из функционального состава, моносахариды проявляют свойства многоатомных спиртов, карбонильных соединений, полуацеталей и специфические свойства.

1) Свойства многоатомных спиртов проявляются в качественной реакции взаимодействия моносахаридов со свежеосажденным гидроксидом меди (II) - Сu(OH) 2. В результате происходит образование растворимого хелатного комплекса ярко-синего цвета. В реакцию вступает a-диольный фрагмент молекулы моносахарида.


2) Свойства альдегидов проявляются в качественной реакции взаимодействия альдегидной группы с мягкими окислителями (Сu(OH) 2 или Ag 2 O) при повышенной температуре. Данная реакция в биохимическом анализе для глюкозы называется пробой Троммера и используется для обнаружения глюкозы в моче.


3) Свойства спиртов проявляются в реакции этерификации ОН-группы под действием кислородсодержащих кислот. Биологическое значение имеют эфиры фосфорной кислоты – фосфаты, образующиеся обычно по месту последнего звена с участием фермента фосфорилазы.

В клетке содержится в виде дианиона. Аналогично образуются сульфаты моносахаридов, входящие в состав полисахаридов соединительной ткани.

4) Моносахариды способны восстанавливаться водородом на никеле или палладии. Продуктами восстановления являются многоатомные спиры - альдиты: глюкоза-сорбит, манноза-маннит, ксилоза-ксилит, галактоза-дульцит.


5) Свойства полуацеталей проявляются во взаимодействии циклических форм моносахаридов со спиртами, при этом полуацетальный или гликозидный гидроксил не проявляют свойств спиртов, а ведут себя специфически, образуя гликозиды.


К специфическим свойствам относятся различные виды окисления моносахаридов, реакции изомеризации и брожения.

а) Спиртовое брожение

C 6 H 12 O 6 → 2C 2 H 5 OH + 2CO 2

б) Молочно-кислое брожение


Производные моносахаридов. Аминосахара. Сахарные кислоты

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «api-clinic.ru» — Центр естественной медицины