Откуда берутся электроны. Что такое электроны

Этот вопрос, как капуста, его раскрываешь-раскрываешь, а до "фундаментальной" кочерыжки всё ещё далеко. Хоть вопрос, видимо, касается этой самой кочерыжки, придётся всё же попробовать одолеть всю капусту.

На самый поверхностный взгляд природа тока кажется простой: ток - это когда заряженные частицы движутся. (Если частица не движется, то тока нет, есть только электрическое поле.) Пытаясь постичь природу тока, и не зная из чего состоит ток, выбрали для тока направление, соответствующее направлению движения положительных частиц. Позже оказалось, что неотличимый, точно такой же по действию ток получается при движении отрицательных частиц в противоположном направлении. Эта симметрия является примечательной деталью природы тока.

В зависимости от того, где движутся частицы природа тока тоже различна. Отличается сам текущий материал:

  • В металлах есть свободные электроны;
  • В металлических и керамических сверхпроводниках - тоже электроны;
  • В жидкостях - ионы, которые образуются при протекании химических реакций или при воздействии приложенного электрического поля;
  • В газах - снова ионы, а также электроны;
  • А вот в полупроводниках электроны несвободны и могут двигаться "эстафетно". Т.е. двигаться может не электрон, а как бы место, где его нет - "дырка". Такая проводимость называется дырочной. На спайках разных полупроводников природа такого тока рождает эффекты, делающие возможной всю нашу радиоэлектронику.

У тока две меры: сила тока и плотность тока. Между током зарядов и током, например, воды в шланге больше различий, чем сходства. Но такой взгляд на ток вполне продуктивен, для понимания природы последнего. Ток в проводнике это векторное поле скоростей частиц (если это частицы с одинаковым зарядом). Но мы обычно для описания тока не учитываем эти детали. Мы усредняем этот ток.

Если мы возьмём одну только частицу (естественно заряженную и движущуюся), то ток равный произведению заряда и мгновенной скорости в конкретный момент времени существует ровно там, где находится эта частица. Помните, как было в песне дуэта Иваси "Пора по пиву": "...если климат тяжёл и враждебен астрал, если поезд ушёл и все рельсы ЗА-БРАЛ..." :)

И вот мы пришли к той кочерыжке, которую упоминали вначале. Почему частица имеет заряд (с движением вроде всё ясно, а что же такое заряд)? Наиболее фундаментальные частицы (вот теперь уж точно:) вроде бы неделимые) несущие заряд - это электроны, позитроны (антиэлектроны) и кварки. Отдельно взятый кварк вытащить и исследовать невозможно из-за конфайнмента, с электроном вроде проще, но тоже пока не очень-то ясно. На данный момент видно, что ток квантуется: не наблюдается зарядов меньше заряда электрона (кварки наблюдаются только в виде адронов с совокупным зарядом таким же или нулевым). Электрическое поле отдельно от заряженной частицы может существовать только в связке с магнитным полем, как электромагнитная волна, квантом которой является фотон. Возможно, какие-то интерпретации природы электрического заряда лежат в сфере квантовой физики. Например, предсказанное ею и обнаруженное сравнительно недавно поле Хиггса (есть бозон - есть и поле) объясняет массу ряда частиц, а масса - это мера того, как частица откликается на гравитационное поле. Может быть и с зарядом, как с мерой отклика на электрическое поле, обнаружится какая-то похожая история. Почему есть масса и почему есть заряд - это в чём-то родственные вопросы.

Многое известно о природе электрического тока, но самое главное пока нет.

Кикоин А.К. Две загадки бета-распада //Квант. - 1985. - № 5. - С. 30-31, 34.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Как известно, естественный бета- радиоактивный распад состоит в том, что ядра атомов одного элемента самопроизвольно испускают бета-частицы, то есть электроны, и при этом превращаются в ядра другого элемента с атомным номером на единицу большим, но с прежней массой («Физика 10», § 103). Символически это превращение записывается так:

\(~^M_ZX \to \ ^M_{Z+1}Y +\ ^0_{-1}e\) .

Здесь X - исходное ядро, Y - продукт распада, е - электрон (верхний индекс «0» показывает, что масса электрона по сравнению с атомной единицей массы очень мала).

Тщательное изучение бета-распада показало, что это явление таит в себе две загадки.

Загадка первая: «пропажа» энергии

Если ядро X самопроизвольно превращается в ядро Y , то это значит, что энергия W X ядра X больше, чем энергия W Y ядра Y . А энергия вылетающей при этом бета-частицы должна быть равна разности энергий W X - W Y (если пренебречь энергией отдачи).

Поскольку все исходные ядра X одинаковы, равно как одинаковы и все получающиеся из них ядра Y , все вылетающие бета-частицы должны иметь одну и ту же энергию. Опыты же показывают, что энергия практически всех бета-частиц меньше, чем разность энергий W X - W Y . Точнее: β -частицы имеют различные энергии, и все они лежат в пределах от нуля до максимального значения, равного W X - W Y . Например, для бета-частиц, испускаемых ядрами \(~\ ^{210}_{83}Bi\) (период полураспада 5 дней), максимальное значение энергии около 1 МэВ, а средняя энергия, приходящаяся на долю одной частицы, меньше чем 0,4 МэВ.

Создавалось впечатление, что бета-распад - это процесс, в котором, в нарушение закона сохранения энергии, энергия пропадает бесследно. Некоторые физики склонны были думать, что закон сохранения энергии, безусловно верный в мире макроскопических процессов, «необязателен» для некоторых процессов, связанных с элементарными частицами. К этой мысли (о возможности нарушения закона сохранения энергии) склонялся даже такой физик, как Нильс Бор. Высказывались и другие мнения, что возможно найдутся процессы, при которых энергия не пропадает бесследно (как в случае бета-распада), а наоборот возникает из ничего.

Нейтрино

Закон сохранения энергии был, однако, «спасен» швейцарским физиком-теоретиком Вольфгангом Паули. В 1930 году он высказал предположение, что при бета-распаде из ядра вылетает не только электрон, но и еще одна частица, на долю которой и приходится недостающая энергия. Но почему эта частица никак себя не обнаруживает: не ионизует газ, как это делает электрон; ее энергия при столкновениях с атомами не переходит в тепло и т. д.? Паули объяснял это тем, что придуманная им частица электрически нейтральна и не обладает массой покоя .

Очень странной казалась эта частица, которой итальянский физик Энри ко Ферми дал имя - нейтрино. Все назначение нейтрино состояло в том, чтобы «спасти» закон сохранения энергии. С такими частицами физикам иметь дело еще не приходилось. Тем не менее, идея Паули о новой частице быстро получила всеобщее признание. Советский физик A.И. Лейпунский уже в 1936 году придумал способ ее обнаружения. Однако окончательно ее реальное существование было доказано только в 1956 году, почти через 26 лет после того, как она «родилась» в мозгу физика с богатым воображением - B. Паули.

Загадка вторая: откуда берутся электроны?

Эта загадка бета-распада (ее можно было бы поставить и на первое место) состояла вот в чем.

Как известно («Физика 10», § 107), атомные ядра всех элементов состоят только из протонов и нейтронов. Как же из ядер могут вылетать электроны, которых там нет, и нейтрино, которых там тоже нет?

Объяснить этот удивительный факт (из ядра вылетает то, чего там нет) можно только тем, что частицы - протоны и нейтроны, образующие ядро, способны взаимно превращаться друг в друга. В частности, бета-распад состоит в том, что один из нейтронов, входящих в ядро радиоактивного элемента, превращается в протон.

При этом в ядре оказывается одним протоном больше, чем было, а общее число частиц остается прежним. Просто один из нейтронов стал протоном. Но если бы дело только тем и ограничилось, был бы нарушен закон сохранения электрического заряда. Природа таких процессов не допускает! Так вот, оказывается, что вместе с превращением нейтрона в протон в ядре рождаются электрон, отрицательный заряд которого компенсирует положительный заряд появившегося протона, и нейтрино, которое уносит определенную долю энергии. Таким образом, при бета-распаде в ядре происходит превращение одного из нейтронов в протон и рождение двух частиц - электрона и нейтрино. Протон остается в ядре, электрон же и нейтрино, которым в ядре быть «не полагается», вылетают из него.

Заметим, что процесс бета-радиоактивного распада несколько напоминает процесс испускания светового кванта (фотона). Бета-частица и нейтрино рождаются в момент перехода ядра из одного состояния в другое, аналогично тому как фотон испускается атомом при переходе электрона, входящего в состав электронной оболочки атома, с одного энергетического уровня на другой.

На вопрос Откуда берутся электроны в проводнике? Почему они не кончаются, ведь количество электронов в атоме ограничено? заданный автором Александр Владиславович лучший ответ это Вы наверное не раз слышали, что в металлах есть "свободные" электроны. так вот, "свободные" электроны - это не совсем правильно. На самом деле они не совсем свободные. Давай рассмотрим медный проводник, допустим кольцо из медной проволоки. Каждый атом меди состоит из ядра с зарядом (+29) и 29 электронов (каждый с зарядом (-1)). Эти электроны не одинаковы, они распределены по энергетическим уровням. Электронная формула меди 1s2 2s2 2p6 3s2 3p6 3d10 4s1. Электроны, находящиеся на энергетических уровнях 1s2 2s2 2p6 3s2 3p6 3d10 удерживаются ядром достаточно прочно и находятся каждый возле "своего" ядра, а вот электрон, находящийся на энергетическом уровне 4s1 - очень слабо. Образно говоря, достаточно "дунуть" чтобы не оторвать совсем, а переместить его от одного ядра к другому. У того другого ядра появится лишний электрон, но оно (ядро) не может удержать лишний электрон и передает его третьему, тот следующему и т. д. Эта передача электронов в отсутствие внешних сил хаотична, без определенного направления. В конце концов этот лишний электрон придет к тому ядру, от которого мы его "сдули". Таким образом, электроны, находящиеся на энергетических уровнях 4s1 всех атомов постоянно и очень легко переходят от одного атома к другому. Вот в этом смысле они и называются свободными.
Теперь рассмотрим то же медное кольцо, один участок которого помещен в магнитное поле и под действием внешней (механической) силы движется в нем поперек силовых линий магнитного поля (эта часть кольца генератор, а остальные части - провода и потребитель, например лампочка). Фактически, если опуститься на уровень атомов, под действием приложенной механической силы движутся ядра и электроны. По закону уж не помню кого (я физику уже основательно подзабыл) на движущиеся в магнитном поле заряды действует сила, которая направлена перпендикулярно направлению движения проводника в целом. Эта сила не может заставить перемещаться ядра (они очень тяжелые) и связанные с ними электроны, находящиеся на энергетических уровнях 1s2 2s2 2p6 3s2 3p6 3d10. А вот, так называемые "свободные электроны" (на уровне 4s) она заставляет перемещаться вдоль проводника. Теперь уже движение "свободных" электронов не хаотичное, а строго направленное. Электрон от первого атома перемещается ко второму, от второго к третьему, от третьего... и так далее. Наконец, электрон от последнего атома перемещается к первому (не забываем, что проводник у нас свернут в кольцо.
Таким образом, у каждого атома меди вновь стало по 29 электронов, но 4s электроны не свои, а от соседа. В следующий момент времени все "свободные" электроны сместятся еще на 1 позицию в том же направлении. Работа генераторов переменного тока организована так, что грубо говоря рамка с током вращается в постоянном магнитном поле (в промышленных с частотой 50 герц). Поэтому, в первую половину оборота проводник (одна сторона рамки) пересекает силовые линии вблизи северного полюса магнита, и электроны движутся в каком-то одном направлении. Во вторую половину оборота рамки рассматриваемый проводник пересекает силовые линии вблизи южного полюса магнита, и электроны движутся в противоположном направлении, и так 50 раз в секунду. Правда, на самом деле напряженность магнитного поля, которое пересекает проводник, не постоянная, а изменяется по синусоиде, но это не изменяет сути происходящего. В итоге получается переменный электрический ток, т. е. электроны фактически не уходят далеко от своих ядер, а "болтаются" туда-сюда, как на качелях. Вот примерно так.Спасибо вам огромное, всю жизнь мучал этот вопрос.
Не понял я однако того, как тогда всякие трансформаторы Теслы распространяют электричество в воздухе, или те же молнии, или воздух тоже передает эти "свободные" электроны, но в таком случае они не смогут вернуться к источнику, ведь цепи нет.
В общем хотел бы у вас узнать, или может литературу посоветуете?

Ответ от Dr. Dick [гуру]
так на место тех, что ушли, приходят другие. Ток течет только в замкнутой цепи, помните? То есть, электроны циркулируют по кругу


Ответ от Александр Шевченко [активный]
электроны никуда не бегут, они остаются на месте, они передают заряд по цепочке друг другу.


Ответ от Пиночет [гуру]
Да не бегут эти электроны никуда.
Если тебе сказать, что ни один учёный не знает точно, что такое вообще эл. ток, - то ты потеряешь веру в человечество.))
Есть только гипотезы, то есть предположения, чтобы хоть как-то можно было делать расчёты.
А гипотез ты и сам можешь кучу придумать.
Электроны никуда не бегут, а просто бьют друг друга в жопу, кто дальше улетит.
Типа как шары в бильярде.
Да и когда им бегать? -Скорость тока равна скорости света. Они просто передают друг другу заряд да и всё.


Ответ от Картофельный папа [гуру]
свободные электроны.
Они не кончаются потому что электрический ток - это всегда замкнутый по кругу процесс. Если что-то убыло, значит что-то прибыло.


Ответ от Globe [гуру]
Не знаю, что означает фраза "электроны передают заряд", но по моему скромному разумению дело обстоит так.
Когда мы щелкаем выключателем, по проводнику со скоростью света пробегает некое возмущение. Вы, наверно, видели, как трогается со станции грузовой состав? Локомотив дергает первый вагон, тот - второй, и так по всей цепочке проносится лязганье автосцепки (причем скорость этого лязганья гораздо выше, чем скорость и локомотива, и вагонов) . Так и здесь - электроны устремляются к плюсу, на их место тянутся соседние, и т. п. По проводнику со скоростью света пробегает электромагнитный импульс.
Дальше вспомним, что сила тока - это заряд, прошедший в единицу времени через какое-то сечение проводника. Скорость отдельного электрона может быть крохотной - но он пересек это сечение, и, значит, в силу тока свой вклад сделал.
Свободных же электронов в проводнике много: примерно 10^23 (порядка постоянной Авогадро) . И хотя заряд одного электрона порядка 10^-19Кл, но достаточно 0.01% всех электронов прийти в движение - и по проводнику уже потечет ток 1А.
Это с постоянным током. В переменном же всё ещё проще - там электронам можно никуда не двигаться, а просто колебаться в соответствии с периодическим изменением направления электрического поля.
Ну и, наконец, про убыль. Если в проводнике электронов станет меньше, то он окажется положительно заряженным, и либо ток прекратится, либо он начнет притягивать электроны с минуса элемента питания.


Ответ от Геннадий Карпов [гуру]
Бегут электроны, бегут.
И бежать их заставляет электрическое поле.
Электрон имеет заряд и под действием элполя он перемещается.
В проводниках (металлах например, в электролитах, полупроводниках.... немного другая картина) из-за особенностей их строения есть свободные электроны.
Одни убегают, а на их место прибегают другие, из подсоединенного другого проводника (например выключатель при включении) . Тот проводник соединен с источником тока, а источник перегоняет их по кругу.
Так происходит при постоянном токе.
Если ток переменный (помните про 50 гц в сети) то они колеблются "то туда, то сюда" 50 раз в секунду. И остаются почти на месте.
Электрическое поле в проводнике распространяется быстро, со скоростью света (скоростью распространения элполя) . А сами электроны бегут гораздо медленнее.


Ответ от Evgeny M. [гуру]
Когда что-то бегает по кругу, то оно не убывает никогда.
Почему Вас не посетила такая простая мысль? (Или Вашу учительницу?)
Механизм процесса совсем не важен, детали совсем не важны. Например, не важно, успевает ли один конкретный электрон облетель весь проводник по замкнутому пути и вернуться обратно или он только прилетает в соседний атом и встает там на место вылетевшего электрона.
Главное, что постоянный ток ВСЕГДА идет только по замкнутому пути. Если путь не замкнут, то ток всегда останавливается (электроны кончаются) .
Если путь не замкнут, то в такой системе может существовать только переменный ток. (Например, путь может быть разорван конденсатором.) При переменном токе электроны, вообще, никуда не улетают. Они находятся вблизи своих атомов и только совершают колебательные движения с частотой переменного тока.


Ответ от DoctoR [гуру]
Электроны в проводнике есть - они есть на орбиталях вокруг ядер атомов. Но в проводниках - они свободны. Значит под действием внешних сил могут безприпятственно прийти в движение. . Они сами по себе.
Когда возникает электрическое поле - они начинают упорядочено двигаться.
Согласно закону Киркгофа - сумма токов равна нулю. Поэтому они и не кончаются - они не тратятся никуда - а ходят по кругу в замкнутой цепи.
Второе - в атомах нет орбит)
Есть орбитали - это совокупность точек, где местоположение электрона более вероятно. Вы используете старую модель атома бора.


Ответ от MwenMas [гуру]
Короче говоря, электроны из проводника никуда не уходят. Они всегда в нем остаются и движутся под действием электрического поля то ли в одну сторону при постоянном токе, то ли туда-сюда при переменном. Представь, что в системе отопления насос воду гоняет, она же никуда не девается, меньше ее не становится. Так и с электронами.


Ответ от Ўрий Семыкин [гуру]
Воскрешение Энштейна - это к биологам и медикам.
Здесь не надо физики, достаточно здравого смысла что бы разобраться. Электроны, то не исчезают, а смещаются всего лишь. Иначе бы участок цепи быстро зарядился бы положительно. Раз уж остаётся нейтральным, то заряд компенсируется. Понятно, что электронами же. Реально электроны не "текут" в виде тока, а движется волна электромагнитная. Это посложнее будет понять.


Ответ от Алекс [новичек]
И ко всему сказанному, как возобновляется Заряд (энергии) электронов в замкнутой цепи, если учесть, что часть энергии расходуется на тепло при работе потребителя?


Ответ от Максим алмазов [гуру]
есть такое слово-резонанс..


Ответ от Ёергей [активный]
Электронной теорией наука не в состоянии объяснить многие явления. К ним можно отнести проявление и исчезновение статического электричества, явление магнетизма, нейтральность проводника, проводимость и непроводимость веществами электрического тока, пьезоэлектрический эффект, присутствие электрического тока в разорванной цепи, отсутствие позитронов в рождении электрического тока и их присутствие в порождении электрического разряда, проявление частицами дуализма и многое другое.


Ответ от юра ежов [новичек]
А если в цепи лампочка накала. Она же тратит энергию в световую и тепловую, так получается что электроны заряжены и заряд передают лампочке. Так потом откуда они берут новый заряд? С магнитного поля? Или от того что они дальше по кругу себя пинают
?


Модель свободных электронов на Википедии
Посмотрите статью на википедии про Модель свободных электронов

Откуда приходят электроны, когда электрический генератор производит электричество? Это с воздуха? Будет ли генератор работать в вакууме? У электронов есть масса, так откуда бы их вытащить, если ничего нет?

КДН

Да. Электроны, которые отвечают за токи от генератора, являются свободными электронами в самих проводах; вся твердая материя частично состоит из электронов, поэтому если у вас есть генератор, у вас много электронов.

Ответы

анна v

Можно получить электроны (отрицательные заряды) и положительные ионы в статическом электричестве . Это ясно показывает, что нейтральные атомы не являются неделимыми. Трение может дать силу для извлечения электронов и оставить ионы с положительным зарядом, как это часто случается при ходьбе по коврам.

Диск Фарадея, первый электрический генератор. Подковообразный магнит (А) создавал магнитное поле через диск (D). Когда диск поворачивался, это вызывало электрический ток радиально наружу от центра к ободу. Ток протекал через скользящий пружинный контакт m, через внешнюю цепь и обратно в центр диска через ось.

это - электроны в металлах, которыми управляют магнитные силы в проекте, снова разделяя заряды на движение электрона и положительные ионы. Металлы имеют очень слабо связанные электроны, которые в совокупности принадлежат морю Ферми и могут генерировать ток электрического генератора.

Таким образом, ответ таков: атомы поставляют электроны из своих внешних электронных оболочек . Это атомы в генераторе, которые снабжают электроны, и да, это будет работать в вакууме.

Лахиру Перера

Точно так же, как ваш водяной насос не генерирует воду, электрический генератор не генерирует электроны, он просто перетаскивает электроны из одного места в другое.

Manishearth ♦

В настоящее время ваш ответ не очень полезен, и он намного меньше, чем ранее существовавшие ответы. Может быть, вы могли бы уточнить это?

Джерри Ширмер

Проводящий материал - это материал, через который электроны могут свободно течь.

Напряжение - это разница в электрической потенциальной энергии на единицу заряда - если у меня есть источник 10 В, и я даю +1 С заряда, протекающего от положительного контакта к отрицательному контакту, я передам 10 Дж энергии этому обвинять. Электрический генератор генерирует разность потенциалов между двумя клеммами (обычно как напряжение постоянного тока или как напряжение переменного тока). В обычных бытовых приборах это напряжение подключено к проводу, и электроны в проводящем проводе - это то, к чему передается потенциальная энергия в батарее.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «api-clinic.ru» — Центр естественной медицины